Jahresbericht 2024

DRST Deutsches Register für hämatopoetische Stammzelltransplantation und Zelltherapie e. V.

Jörg-Syrlin-Straße 141, 89081 Ulm www.drst.de

Vorsitzender

Stellvertretende Vorsitzende

Prof. Dr. med. Dr. h. c. Nicolaus Kröger

DRST e. V.

Jörg-Syrlin-Straße 141

89081 Ulm

Telefon: 0731 718047-50

E-Mail: nmkroeger@outlook.de

Prof. Dr. med. Katharina Fleischhauer

Universitätsklinikum Essen

Hufelandstraße 55 45147 Essen

Telefon: 0201 723-4583

E-Mail: katharina.fleischhauer@uk-essen.de

Datenmanagement:

Franziska Hanke, Sophie Mannes, Helga Neidlinger, Claudia Schuh, Samih Smaili

DRST e. V.

Jörg-Syrlin-Straße 141, 89081 Ulm

Telefon: 0731 718047-50 E-Mail: support@drst.de

Datenschutzbeauftragter:

Dr. biol. hum. Hans-Peter Eberhard E-Mail: datenschutz@drst.de

Statistik:

Sarah Flossdorf

Institut für Medizinische Informatik, Biometrie und Epidemiologie (IMIBE)

Universitätsklinikum Essen Hufelandstraße 55, 45147 Essen Telefon: 0201 723-77284

E-Mail: sarah.flossdorf@uk-essen.de

PRSZT Pädiatrisches Register für Stammzelltransplantation und Zelltherapie

Medizinische Hochschule Hannover Zentrum Kinderheilkunde und Jugendmedizin Pädiatrische Hämatologie und Onkologie Carl-Neuberg-Str. 1 30625 Hannover

PRSZT Registerbeauftragte Datenmanagement

Dr. med. Rita Beier Kirsten Mischke, Oliver Rossol und Hartmut Ehlerding

Statistik

Telefon: 0511 532-9467 Telefon: 0511 532-7883, -9418 E-Mail: beier.rita@mh-hannover.de E-Mail: prst@mh-hannover.de

Stelly. PRSZT Registerbeauftragte

Dr. med. Barbara Meissner Dr. Martin Zimmermann

Telefon: 0511 532-7883 E-Mail: zimmermann.martin@mh-hannover.de

E-Mail: prst@mh-hannover.de

Inhaltsverzeichnis

1	Vorwort										
2	Vors	stand u	and Mitglieder	3							
	2.1	Vorsta	and	3							
	2.2	Persör	nliche Mitglieder und Ehrenmitglieder (E)	3							
	2.3	Zentru	umsmitglieder	4							
	2.4	Förder	rmitglieder	5							
3	Arb	eitsberi	icht und statistischer Überblick 2024	6							
	3.1	Statist	tischer Überblick über die im EBMT Registry verfügbaren Daten	7							
	3.2	Alloge	ne Transplantationen in Deutschland	13							
		3.2.1	Entwicklung der Fallzahlen allgemein	13							
		3.2.2	Indikationen	14							
		3.2.3	Spendertypen und Stammzellquellen	16							
		3.2.4	Spenderlymphozyteninfusionen (DLI)	20							
	3.3	Autolo	oge Transplantationen in Deutschland	21							
		3.3.1	Entwicklung der Fallzahlen allgemein	21							
		3.3.2	Indikationen	21							
	3.4	Deuts	chland im Vergleich mit sieben anderen europäischen Ländern	23							
		3.4.1	Allogene Transplantationen	23							
		3.4.2	Autologe Transplantationen	27							
	3.5	CAR-	T-Zell-Therapien in Deutschland	28							
	3.6		nationen zum Pädiatrischen Register für Stammzelltransplantation und Zelltherapie .	30							
4	Förd	derung	nationaler klinischer Studien	33							
	4.1	_	gstellung	33							
	4.2	`	ierte Studien	34							
	4.3		nde Studien	35							
		4.3.1	Tyrosinkinaseinhibition im Rezidiv nach allogener Blutstammzelltransplantation bei								
			Ph+ CML-Ergebnisse einer multizentrischen, retrospektiven Analyse	38							
		4.3.2	Retrospective analysis of allogeneic hematopoietic stem cell transplantation (HSCT)								
			in the treatment of relapse of myeloid neoplasia after a first allogeneic HSCT	39							
		4.3.3	Brexu-cel bei resistentem Mantelzelllymphom im deutschen und Schweizer								
			Versorgungsalltag: Eine GLA/EMCL/DRST/SAKK-Analyse	40							
		4.3.4	Evaluierung der Stammzelltransplantationen als einzig potenziell kurative Therapie-								
			linie in der T-Prolymphozytenleukämie	41							
		4.3.5	Reduzierte posttransplant Cyclophosphamid-Dosis (ptCy) zur Prophylaxe der Graft-								
			versus-Host Disease (GvHD) nach allogener Stammzelltransplantation (alloSZT)								
			von Familienspendern (haplo-identical oder matched) oder unverwandten Spendern								
			(mismatched oder matched)	42							
		4.3.6	Einordnung des "CMML transplant scores" – ROC-Kurve zur Analyse der Diskrimi-	_							
		-	nierung des Risikoscores	43							

	4.3.7	Real-World-Analyse der CAR- I - Zelltherapie bei rezidiviertem oder refraktärem mul-	
		tiplem Myelom in Deutschland	43
	4.3.8	Auswertung der DP-TCE Studie zum Einfluss von HLA-DPB1 Spender-Empfänger	
		Differenzen auf das Outcome der 10/10 Fremdspendertransplantation für maligne	4.4
	4.3.9	hämatologische Erkrankungen	44
	4.3.9	Outcome bei FLT3-mutierter AML: Eine Real-World-Analyse des Deutschen Regis-	
		ters für Hämatopoetische Stammzelltransplantation und Zelltherapie (DRST)	45
	4.3.10	Der Einfluss von HLA-Differenzen mit Fokus auf HLA-DQB1 Differenzen auf den	10
		Erfolg der unverwandten Blutstammzelltransplantation. Auswertung der DRST Da-	
		ten von Transplantationen aus den Jahren 2010 - 2021 zusammen mit HLA-Daten	
		der Sucheinheit Ulm	47
	4.3.11	Retrospektive Analyse der DRST-Registerdaten zum Überleben Heranwachsender	
		und junger Erwachsener nach allogener Stammzelltransplantation in Deutschland .	48
5	Aktuelles v	om Datenschutz	50
6	Danksagun	gen	51
7	Abkürzungs	nuova ichnia	53
'	Aukurzungs	sverzeichnis	33
8	Anlagen		55
Α	DRST/EBN	MT Survey on Transplant and Cellular Therapy Activity 2024	56
В	Publikation	en unter Beteiligung des DRST in 2024	61
С	Dautaaldan	dhantar Standarta dan in 2024 allaman tuananlantianan dan Zantuan	62
C	Deutschlan	dkarte: Standorte der in 2024 allogen transplantierenden Zentren	02
D	Deutschlan	dkarte: Standorte der in 2024 autolog transplantierenden Zentren	63
E	Deutschlan	dkarte: Standorte der in 2024 mit CAR-T-Zell-Therapien behandelnden Zentren	64
F	Deutschlan	dkarte: Standorte der in 2024 transplantierenden pädiatrischen Zentren	65

1 Vorwort

Liebe Kolleginnen, liebe Kollegen,

liebe Freunde und Förderer des Deutschen Registers für hämatopoetische Stammzelltransplantation und Zelltherapie (DRST),

das Jahr 2024 war für das DRST gekennzeichnet durch die neue Mitgliederstruktur in der geänderten Satzung, in der eine Ehrenmitgliedschaft eingeführt wurde und die jetzt ähnlich wie die EBMT die Zentrumsmitgliedschaft stärker berücksichtigt. Dadurch ist es insgesamt zu einer Zunahme der Mitgliederzahlen gekommen. Aktuell zählt das DRST 2 Ehrenmitglieder, 37 persönliche Mitglieder, 32 Zentrumsmitglieder und 25 Fördermitglieder.

Derzeit sind im DRST mehr als 88.000 autologe und fast 70.000 allogene Transplantationen sowie mehr als 3.800 CAR-T-Zell-Therapien inkl. Follow-Up-Daten dokumentiert, was eine Vielzahl von wissenschaftlichen Auswertungen erlaubt. So war bezüglich wissenschaftlicher Projekte und Publikationen das Jahr 2024 wiederum sehr erfolgreich mit zahlreichen Manuskripten, die in hochrangigen Journalen wie Blood, Leukemia u. a. mit hohem Impact Factor publiziert wurden. Lesen Sie dazu die Kurzbeschreibung der Projekte auf den Seiten 38 ff.

Ein weiterer Schwerpunkt lag auf der datenschutzrechtlichen Absicherung externer Kooperationen, etwa im Rahmen von Studien oder Forschung. Die klare Regelung der jeweiligen Verantwortlichkeiten trägt wesentlich zur Rechtssicherheit und Verlässlichkeit gemeinsamer Datenverarbeitung bei. Die Datenschutzarbeit ist im DRST strukturell verankert und erfolgt agil, nachvollziehbar und unabhängig – unterstützt durch moderne Werkzeuge wie NextCloud und digitale Kanban-Boards. Gesetzeskonformer Datenschutz ist eine tragende Säule zukunftsfähiger Registerarbeit.

Im Jahre 2024 war eine weitere geringe Steigerung der allogenen Stammzelltransplantationen (n = 3582) zu verzeichnen, welche in erster Linie auf die zunehmenden Zahlen bei den myeloischen Neoplasien (AML, MDS, MPN) zurückzuführen ist, während die allogenen Transplantationszahlen für die lymphatischen Neoplasien, vor allem NHL und Myelom, eine abnehmende Tendenz zeigen, bedingt durch zahlreiche neue Therapieoptionen, inklusive der CAR-T-Zell-Therapie.

Bei den autologen Stammzelltransplantationen sehen wir in Deutschland für das Jahr 2024 einen leichten Rückgang der Transplantationszahlen, wobei das Multiple Myelom eher stabile Zahlen zeigt und der Rückgang in erster Linie auf die malignen Lymphome zurückzuführen ist, bedingt durch den zunehmenden Einsatz der CAR-T-Zell-Therapie, die beim frührezidivierten oder refraktären diffus großzelligen B-Zell-Lymphom in randomisierten Studien eine Überlegenheit gegenüber der autologen Stammzelltransplantation gezeigt hat.

Bei den CAR-T-Zell-Therapien ist es nicht unerwartet zu einer Fallzahlsteigerung vor allem beim Multiplen Myelom gekommen, nachdem diese Therapieform die Zulassung in der Zweitlinientherapie bei Lenalidomidrefraktärität erhalten hat.

Wir bedanken uns besonders bei unserem Team in Ulm: Frau Hanke, Frau Mannes, Frau Neidlinger, Frau Schuh und Herrn Smaili, der Ende 2023 ins Team gekommen ist. Ebenso bedanken wollen wir uns bei unserer Statistikerin Frau Flossdorf, unserem Datenschutzbeauftragten Herrn Dr. Eberhard und dem langjährigen Schatzmeister Herrn Manfred Stähle für ihre tatkräftige und effiziente Arbeit sowie dem DRST-Vorstand für die Unterstützung, wodurch unsere Funktionsfähigkeit auf hohem Niveau gewährleistet ist.

Wir möchten uns aber auch bei allen DRST-Mitgliedszentren und persönlichen DRST-Mitgliedern, der Alfred und Angelika Gutermuth-Stiftung, der Sonja und Ralf Hennermann-Stiftung sowie der DKMS Group gGmbH bedanken, die durch ihre großzügige Förderung die Finanzierung des DRST mittelfristig sichern.

Hamburg und Essen im Juli 2025

Prof. Dr. h. c. Nicolaus Kröger

Prof. Dr. Katharina Fleischhauer

2 Vorstand und Mitglieder

2.1 Vorstand

Vorsitzender: Prof. Dr. h. c. Nicolaus Kröger

Stellvertretende Vorsitzende: Prof. Dr. Katharina Fleischhauer

Schatzmeister: Dipl.-Volkswirt Manfred Stähle

Beisitzer:

PD Dr. Joannis Mytilineos, Prof. Dr. Johannes Schetelig, Prof. Dr. Thomas Schroeder (seit 2024),

Prof. Dr. Matthias Stelljes (bis 2024)

Satzungsgemäß gehört der Sprecher der DAG-HSZT, Herr Prof. Dr. Peter Dreger, ebenfalls dem Vorstand

des DRST an.

2.2 Persönliche Mitglieder und Ehrenmitglieder (E)

Prof. Dr. Renate Arnold

Prof. Dr. Francis A. Ayuk

Prof. Dr. Dietrich W. Beelen (E)

Dr. Rita Beier

Prof. Dr. Wolfgang Bethge (bis 2024)

Prof. Dr. Jan Beyersmann

Prof. Dr. Martin Bornhäuser

Prof. Dr. Donald Bunjes

PD Dr. Markus Ditschkowski

Prof. Dr. Peter Dreger

Prof. Dr. Angelika Eggert

Prof. Dr. Gerhard Ehninger

Prof. Dr. Katharina Fleischhauer

Sarah Flossdorf M. Sc.

PD Dr. Daniel Fürst

Dr. Nico Gagelmann

Dr. Tobias Holderried (seit 2024)

Prof. Dr. Peter Horn

Prof. Dr. Edgar Jost (seit 2024)

PD Dr. Stefan Klein (seit 2024)

Dr. med. Martin Klump (seit 2024)

Prof. Dr. Guido Kobbe

Prof. Dr. Hans-Jochem Kolb

Prof. Dr. h. c. Nicolaus Kröger

Dr. Dr. Carlheinz Müller (E)

PD Dr. Joannis Mytilineos

Prof. Dr. med. Ralph Naumann (seit 2024)

PD Dr. Hellmut Ottinger

Annette Rasche, MBA

Prof. Dr. Christian Reinhardt

Dr. Elisa Sala

Prof. Dr. Johannes Schetelig, M. Sc.

Prof. Dr. Hubert Schrezenmeier

Prof. Dr. Thomas Schroeder

Prof. Dr. med. Christian Seidl (seit 2024)

Dipl.-Volkswirt Manfred Stähle

Prof. Dr. Matthias Stelljes

Prof. Dr. Friedrich Stölzel

Prof. Dr. Lorenz Thurner (seit 2024)

Prof. Dr. Axel Zander

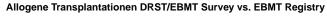
2.3 Zentrumsmitglieder

DRST-CIC	Ort	Institution	Investigator
521	Aachen	Universitätsklinikum	Prof. Dr. Edgar Jost
861	Augsburg	Universitätsklinikum	Prof. Dr. Christoph Schmid
961	Bamberg	Klinikum	Prof. Dr. Ruth Seggewiß-Bernhardt
131	Berlin	Charité	Prof. Dr. Igor-Wolfgang Blau
531	Bonn	Universitätsklinikum	Dr. Tobias Holderried
281	Bremen	Ev. Diakonie-Krankenhaus	Prof. Dr. Ralf Ulrich Trappe
443	Dortmund	Gem. Transpl. Dortmund-Mitte	PD Dr. Ralf Georg Meyer
011	Dresden	Universitätsklinikum	Prof. Dr. Martin Bornhäuser
451	Essen	Uni - Hämatologie u. Stammzelltr.	Prof. Dr. Thomas Schroeder
244	Flensburg	Malteser Krankenhaus	Prof. Dr. Angela Krackhardt
601	Frankfurt (Main)	Universitätsklinikum	PD Dr. Gesine Bug
152	Frankfurt (Oder)	Klinikum	Prof. Dr. Michael Kiehl
371	Göttingen	Universitätsklinikum	Prof. Dr. Gerald Wulf
171	Greifswald	Universitätsklinikum	Prof. Dr. William Krüger
061	Halle (Saale)	Universitätsklinikum	apl. Prof. Dr. Lutz P. Müller
201	Hamburg	${\sf UKE-Stammzell transplantation}$	Prof. Dr. Francis Ayuketang Ayuk
691	Heidelberg	Universitätsklinikum	Prof. Dr. Peter Dreger
761	Karlsruhe	Städt. Klinikum	Prof. Dr. Mark Ringhoffer
242	Kiel	Universitätsklinikum	Prof. Dr. Friedrich Stölzel
041	Leipzig	Universitätsklinikum	Dr. Georg-Nikolaus Franke
391	Magdeburg	Universitätsklinikum	Prof. Dr. Dimitrios Mougiakakos
551	Mainz	Universitätsklinikum	Dr. Eva Wagner-Drouet
681	Mannheim	Universitätsklinikum	PD Dr. Stefan Klein
483	Münster	Universitätsklinikum	Prof. Dr. Matthias Stelljes
901	Nürnberg	Klinikum Nürnberg Nord	Dr. Kerstin Schäfer-Eckart
931	Regensburg	Universitätsklinikum	Prof. Dr. Matthias Edinger
271	Rotenburg (W.)	Diakoniekrankenhaus	Dr. Alf Sabitzer
741	Schwäbisch Hall	Diakonie-Klinikum	Prof. Dr. Michael Medinger
572	Siegen	Diakonie-Klinikum	Prof. Dr. Ralph Naumann
722	Tübingen	Universitätsklinikum	Prof. Dr. Wolfgang Bethge
892	Ulm	Universitätsklinikum	Dr. Elisa Sala
971	Würzburg	Universitätsklinikum	Prof. Dr. Hermann Einsele

2.4 Fördermitglieder

DRST-CIC	Ort	Institution
122	Berlin	Vivantes Klinikum Neukölln
133	Berlin	Helios Klinikum Berlin-Buch
441	Bochum	Universitätsklinikum Bochum
381	Braunschweig	Städt. Klinikum
091	Chemnitz	Klinikum
401	Düsseldorf	Universitätsklinikum
912	Erlangen	Universitätsklinikum
456	Essen	Ev. Krankenhaus Essen-Werden
605	Frankfurt (Main)	Agaplesion Bethanien Krankenhaus
792	Freiburg	Universitätsklinikum
202	Hamburg	Asklepios Klinik St. Georg
302	Hannover	Med. Hochschule
661	Homburg (Saar)	Universitätsklinikum
072	Jena	Universitätsklinikum
501	Köln	Universitätsklinikum
231	Lübeck	Universitätsklinikum
671	Ludwigshafen	Klinikum
351	Marburg	Universitätsklinikum
812	München	Klinikum Großhadern
813	München	Klinikum rechts der Isar
261	Oldenburg	Klinikum
181	Rostock	Universitätsklinikum
701	Stuttgart	Katharinenhospital
704	Stuttgart	Robert-Bosch-Krankenhaus
705	Stuttgart	Diakonie-Klinikum

3 Arbeitsbericht und statistischer Überblick 2024


Mit dem DRST/EBMT Survey on Transplant and Cellular Therapy Activity wurde bei den Zentren wieder die Transplantationsaktivität des Vorjahres abgefragt. Der hierbei verwendete Meldebogen ist zusammen mit den zugehörigen Instruktionen diesem Jahresbericht als Anlage beigefügt.

Die Erfassung erfolgte für das Berichtsjahr 2024 über die in 2023 neu eingeführte Web-Anwendung der EBMT. Eine DRST-eigene Survey-Datenbank gibt es aber selbstverständlich weiterhin. In regelmäßigen Datenupdates wurden die Surveydaten von der EBMT an das DRST geschickt.

Der Survey liefert zeitnah wichtige Daten über die Gesamtzahl und deren Entwicklung über die Jahre der an den deutschen Transplantationszentren durchgeführten allogenen und autologen Transplantationen und Zelltherapien bei verschiedenen Indikationen einschließlich des Spendertyps (verwandt/unverwandt) und der gewählten Stammzellquelle (Knochenmark/peripheres Blut/Nabelschnurblut). Damit stehen wichtige Referenzgrößen zur Beurteilung der Vollständigkeit der Verlaufsdokumentation im EBMT Registry (s. Abbildung 3.1, Abbildung 3.2 und Abbildung 3.3) wie auch zur Planung von Studien zur Verfügung.

Für beide Transplantationsmodalitäten (allogen/autolog) werden in den Abschnitten 3.2 und 3.3 Sammelstatistiken der Surveyzahlen gezeigt, die den Zeitraum von 2014 bis 2024 abdecken. In Abschnitt 3.4 werden die Transplantationsaktivitäten von Deutschland mit denen von sieben anderen europäischen Nationen für den Zeitraum von 2019 bis 2023 verglichen. Im Abschnitt 3.5 finden Sie Informationen zu CAR-T-Zell-Therapien und im Abschnitt 3.6 einen Beitrag des Pädiatrischen Registers für Stammzelltransplantation und Zelltherapie.

3.1 Statistischer Überblick über die im EBMT Registry verfügbaren Daten

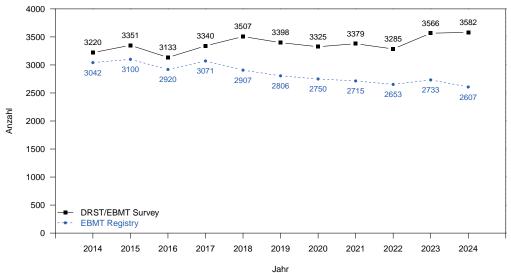


Abbildung 3.1: Stand der Datenerfassung allogener Erst- und Folgetransplantationen im EBMT Registry.

Datenquellen: DRST/EBMT Survey on Transplant and Cellular Therapy Activity (Soll-Werte), dokumentierte
Transplantationen im EBMT Registry zum 15.07.2025 (Ist-Werte).

Auch wenn nicht für alle Transplantationen aktuelle Follow-ups vorliegen, so bietet der Datenbestand mit über 158 000 Transplantationsdatensätzen und über 3 800 CAR-T-Zell-Therapien durchaus einen Anreiz, diesen zu Studienzwecken zu nutzen. Alle Abbildungen und Tabellen mit Daten aus dem EBMT Registry basieren auf dem Datenbankstand vom 15.07.2025. Die Daten der Transplantationen bei Kindern, die in Deutschland vom PRSZT dokumentiert werden, werden in der Regel einmal jährlich in das EBMT Registry eingespielt. Der letzte Import der Daten erfolgte im Mai 2018.

Diagnose	HL	A-id ve	rwand	lt	HL	A-MM	verwa	ndt	Zwi	lling		unverwa	ndt		Gesamt
	KM	PB	CB	ОТ	KM	PB	CB	ОТ	KM	PB	KM	PB	CB	OT	
Akute Leukämie (AL)															
AML	441	5312	2	12	264	1180		46	8	52	926	15856	17	2	24118
ALL	368	1353	6	5	86	367	4	23	5	10	860	3588	14	2	6691
andere AL	18	162		3	7	41				1	41	461			734
MDS	139	1029	1	5	43	157		1		8	296	3795	6	2	5482
MPN															
Myelofibrose	18	380			9	58				4	52	1399		1	1921
CNL	1	6									1	22			30
Mastozytose		9			1	2					3	34			49
Mastzellleukämie		7				2						6			15
SM-AHN						2						4			6
andere MPN	9	257		2	4	45		1		6	34	847		1	1206
MDS/MPN															
MDS/MPN mit Neutrophilie	5	49			1	4		1			10	147			217
andere MDS/MPN	31	186			8	42				2	58	857	2		1186
Chronische Leukämie (CL)															
CML	256	691		4	19	95		3	6	7	464	1266	1		2812
CLL/SLL/Richter	17	382		1	4	30		1		6	51	939			1431
PLL und andere CL	7	41			4	8				4	6	221			291
Lymphom															
Hodgkin-Lymphom	5	167			14	33				4	22	308			553
NHL	75	1166	1		67	232		9		23	183	2934	2		4692
anderes Lymphom	19	106		1	2	11		1			29	218	1		388
Knochenmarkversagen (BMF)															
Aplastische Anämie	196	125		1	17	25			3	7	266	203		1	844
andere BMF	90	36		2	13	19		1			123	102	3	2	391
Hämoglobinopathie															
Thalassämie	105	12	4	4	10	14	1				38	32			220
Sichelzellanämie	39	8			10	13					9	5			84
andere Hämoglobinopathie	4	1				4					2	6			17
Plasmazellneoplasie inkl. MM	26	996		2	15	80			2	22	113	1868	2	1	3127
Angeborener Defekt	178	30	2	3	43	158			1		309	170	14		908
Solider Tumor	12	89			1	159			2	4	4	35			306
Autoimmunerkrankung	2	8			1	2				2	10	7			32
Andere Hämatologische Erkrankung	21	20			6	17		1			73	86	3	1	228
Andere Indikation		2										8			10
Gesamt	2082	12630	16	45	649	2800	5	88	27	162	3983	35424	65	13	57989

Tabelle 3.1: Anzahl der im EBMT Registry dokumentierten allogenen Ersttransplantationen von Erwachsenen und Kindern, die in Deutschland zwischen 1998 und 2024 durchgeführt wurden, aufgeschlüsselt nach Diagnose, Spendertyp und Stammzellquelle.

Diese Darstellung berücksichtigt keine Fälle mit unvollständigen Informationen zur Stammzellquelle und/oder zum Spendertyp und/oder zur Diagnose und keine Transplantationen mit mehreren Spendern.

Patientencharakteristik	Anzahl	%
Anzahl der Transplantationszentren	70	
Zentren	73	
fehlende Angabe	0	
Medianes Alter des Patienten bei Transplantation in Jahren (Spannweite)	52,91 (0,01-83,8)	
Alter bei Transplantation		
<18	5024	8
18-30	5337	9
31-40	5870	10
41-50	9880	16
51-60	15394	26
61-70	15332	26
>70 fehlende Angabe	3142	5
Temeride Angabe	4	0
Geschlecht	0.4201	4.1
weiblich	24321	41
männlich	35631	59
fehlende Angabe	31	0
Performance Status		
gut (Karnofsky/Lansky 80-100 und ECOG 0-1)	49788	83
schwach (Karnofsky/Lansky 10-70 und ECOG 2-4)	4270	7
fehlende Angabe	5925	10
CMV-Kombination Spender-Patient		
negativ - negativ	15738	26
negativ - positiv	9746	16
positiv - negativ	4897	8
positiv - positiv	18521	31
mehrere Spender	107	0
fehlende Angabe	10974	18
Geschlechtkombination Spender-Patient		
weiblich - weiblich	9289	15
weiblich - männlich	9258	15
männlich - weiblich	13765	23
männlich - männlich	24518	41
mehrere Spender	105	0
fehlende Angabe	3023	5
Spendergeschlecht		
weiblich	18556	31
männlich	38299	64
mehrere Spender	105	C
fehlende Angabe	3023	5
Medianes Alter des Spenders in Jahren (Spannweite)	34 (0,27-88,06)	
Alter des Spenders		
<18	539	1
18-30	11575	19
31-40	8623	14
41-50	5663	9
51-60	3403	6
61-70	1417	2
>70	128	0
fehlende Angabe	28635	48

Tabelle 3.2: Übersicht über Kovariablen von Erwachsenen und Kindern mit in der Datenbank EBMT-Registry registrierter allogener Ersttransplantation, die in Deutschland zwischen 1998 und 2024 durchgeführt wurden. Der CMV-Status von Patient und Spender wurde erst 2007 in den Med-A-Bogen aufgenommen, das Alter des Spenders erst Ende 2015. Für die Vorjahre sind diese Angaben nur selten vorhanden. Um die Angaben beim Spenderalter nicht zu verfälschen, sind Transplantationen mit Nabelschnurblut oder mehreren Spendern nicht enthalten.

Autologe Transplantationen DRST/EBMT Survey vs. EBMT Registry – auto/allo Zentren

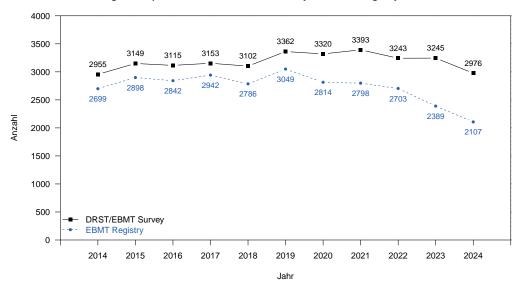


Abbildung 3.2: Stand der Datenerfassung autologer Erst- und Folgetransplantationen im EBMT Registry. Berücksichtigt werden hier nur die autologen Transplantationen der Zentren, die sowohl autologe als auch allogene Transplantationen durchführen.

Datenquellen: DRST/EBMT Survey on Transplant and Cellular Therapy Activity (Soll-Werte), dokumentierte Transplantationen im EBMT Registry zum 15.07.2025 (Ist-Werte).

Autologe Transplantationen DRST/EBMT Survey vs. EBMT Registry – nur auto Zentren

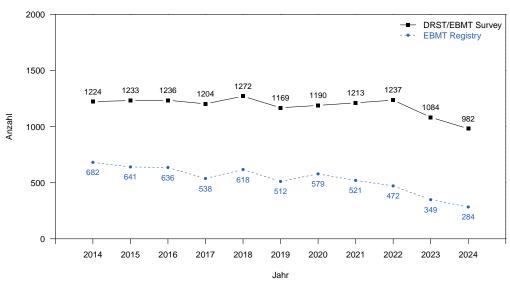


Abbildung 3.3: Stand der Datenerfassung autologer Erst- und Folgetransplantationen im EBMT Registry. Berücksichtigt werden hier nur die autologen Transplantationen der Zentren, die ausschließlich autologe Transplantationen durchführen.

Datenquellen: DRST/EBMT Survey on Transplant and Cellular Therapy Activity (Soll-Werte), dokumentierte Transplantationen EBMT Registry zum 15.07.2025 (Ist-Werte).

Diagnose	Ersttransplantation	Folgetransplantation	Gesamt
Akute Leukämie (AL)			
AML	1214	71	1285
ALL	331	35	366
andere AL	32	1	33
MDS	37	6	43
MPN			
Myelofibrose	13	1	14
andere MPN	7	2	9
MDS/MPN			
MDS/MPN mit Neutrophilie	2		2
andere MDS/MPN	3		3
Chronische Leukämie (CL)			
CML	107	5	112
CLL/SLL/Richter	383	9	392
PLL und andere CL	35	9	44
Lymphom			
Hodgkin-Lymphom	3216	189	3405
NHL	19046	1536	20582
anderes Lymphom	1022	181	1203
Knochenmarkversagen (BMF)			
Aplastische Anämie	1		1
andere BMF	1	1	2
Hämoglobinopathie			
Thalassämie	2		2
Sichelzellanämie	1		1
Plasmazellneoplasie inkl. MM	31537	13067	44604
Angeborener Defekt	7	1	8
Solider Tumor	6134	4656	10790
Autoimmunerkrankung	455	6	461
Andere Hämatologische Erkrankung	16	2	18
Andere Indikation	20	1	21
Gesamt	63622	19779	83401

Tabelle 3.3: Anzahl der im EBMT Registry dokumentierten autologen Erst- und Folgetransplantationen von Erwachsenen und Kindern, die in Deutschland zwischen 1998 und 2024 durchgeführt wurden, aufgeschlüsselt nach Diagnose. Diese Darstellung berücksichtigt keine Fälle mit unvollständigen Informationen zur Diagnose.

Patientencharakteristik	Anzahl	%
Anzahl der Transplantationszentren		
Zentren	126	
fehlende Angabe	0	
Medianes Alter des Patienten bei Transplantation in Jahren (Spannweite)	57,3 (0,31-86,35)	
Alter bei Transplantation		
<18	1689	3
18-30	3268	5
31-40	4614	7
41-50	9268	15
51-60	19373	30
61-70	21102	33
>70	4276	7
fehlende Angabe	32	0
Geschlecht		
weiblich	24355	38
männlich	39208	62
fehlende Angabe	59	0
Performance Status		
gut (Karnofsky/Lansky 80-100 und ECOG 0-1)	53091	83
schwach (Karnofsky/Lansky 10-70 und ECOG 2-4)	3240	5
fehlende Angabe	7291	11

Tabelle 3.4: Übersicht über Kovariablen von Erwachsenen und Kindern mit in der Datenbank EBMT-Registry registrierter autologer Ersttransplantation, die in Deutschland zwischen 1998 und 2024 durchgeführt wurden.

3.2 Allogene Transplantationen in Deutschland

3.2.1 Entwicklung der Fallzahlen allgemein

Allogene Transplantationen Anzahl Allo-Total Allo-Erst Jahr

Abbildung 3.4: Entwicklung der Fallzahlen allogener Blutstammzelltransplantationen in Deutschland. Angegeben sind für jedes Transplantationsjahr die Zahl der Ersttransplantationen (Allo-Erst) und die Gesamtzahl aller Transplantationen (Allo-Total), d. h. die Summe von Erst- und Folgetransplantationen.

3.2.2 Indikationen

Tabelle 3.5 zeigt die absoluten Fallzahlen sowie die zugehörigen Prozentsätze der Indikationen zur allogenen Ersttransplantation in den letzten Jahren.

Jahr	20	020	20)21	20)22	20)23	20)24
Diagnose/Stadium	N	%	N	%	N	%	N	%	N	%
Leukämie										
AML 1. CR	602	19,6	669	21,5	660	21,7	715	21,5	695	20,9
AML nicht 1. CR	444	14,4	413	13,3	394	13,0	482	14,5	0	0,0
AML CR: > 1. CR	0	0,0	0	0,0	0	0,0	0	0,0	132	4,0
AML nicht CR	0	0,0	0	0,0	0	0,0	0	0,0	323	9,7
AML therapieassoziiert	83	2,7	105	3,4	108	3,6	93	2,8	110	3,3
AML transformiert aus MDS/MPN	267	8,7	251	8,1	297	9,8	328	9,9	357	10,7
ALL 1. CR	234	7,6	238	7,6	238	7,8	227	6,8	221	6,6
ALL nicht 1. CR	106	3,4	85	2,7	129	4,2	121	3,6	136	4,1
CML 1. CP	22	0,7	28	0,9	30	1,0	28	0,8	27	0,8
CML nicht 1. CP	48	1,6	45	1,4	35	1,2	34	1,0	35	1,1
MDS	470	15,3	492	15,8	477	15,7	570	17,1	412	12,4
MDS/MPN	0	0,0	0	0,0	0	0,0	0	0,0	135	4,1
MPN [']	173	5,6	187	6,0	183	6,0	214	6,4	251	7,5
CLL	40	1,3	35	1,1	28	0,9	45	1,4	35	1,1
Summe Leukämie	2489	80,8	2548	81,8	2579	84,9	2857	85,9	2869	86,1
Lymphoproliferative Erkrankung		,-		- ,-		- ,-		,-		,
Plasmazellerkrankung: Myelom	74	2,4	63	2,0	25	0,8	33	1,0	10	0,3
Plasmazellerkrankung: andere	8	0,3	5	0,2	4	0,1	6	0,2	3	0,1
Hodgkin-Lymphom	19	0,6	26	0,8	19	0,6	25	0,8	14	0,4
Non-Hodgkin-Lymphom	246	8,0	221	7,1	0	0,0	0	0,0	0	0,0
DLBCL	0	0,0	0	0,0	38	1,3	39	1,2	62	1,9
Mantelzell-Lymphom	0	0,0	0	0,0	0	0,0	0	0,0	2	0,1
Follikuläres Lymphom	0	0,0	0	0,0	0	0,0	0	0,0	3	0,1
PMBCL	0	0,0	0	0,0	0	0,0	0	0,0	4	0,1
andere B-Zell NHL	0	0,0	0	0,0	34	1,1	20	0,6	10	0,3
T-Zell NHL	0	0,0	0	0,0	92	3,0	96	2,9	90	2,7
Summe Lymphoproliferative Erkrankung	347	11,3	315	10,1	212	7,0	219	6,6	198	5,9
Solider Tumor						-,-		-,-		-,-
Neuroblastom	13	0,4	13	0,4	8	0,3	15	0,5	18	0,5
Weichteiltumor	0	0,0	0	0,0	0	0,0	0	0,0	1	0,0
Ewing-Sarkom	1	0,0	0	0,0	0	0,0	0	0,0	0	0,0
anderer solider Tumor	3	0,1	0	0,0	0	0,0	1	0,0	1	0,0
Summe Solider Tumor	17	0,6	13	0,4	8	0,3	16	0,5	20	0,6
Nicht Maligne Erkrankung		0,0	15	0, 1		0,0	10	0,5		0,0
Knochenmarkaplasie: SAA	57	1,9	49	1,6	56	1,8	55	1,7	52	1,6
Knochenmarkaplasie: andere	18	0,6	22	0,7	25	0,8	20	0,6	26	0,8
Thalassämie	22	0,7	33	1,1	37	1,2	36	1,1	32	1,0
Sichelzellanämie	26	0,7	36	1,2	36	1,2	34	1,0	41	1,2
primärer Immundefekt	73	2,4	66	2,1	62	2,0	55	1,7	58	1,7
angeborener Metabolismusdefekt	23	0,7	19	0,6	12	0,4	16	0,5	18	0,5
Summe Nicht Maligne Erkrankung	219	7,1	225	7,2	228	7,5	216	6,5	227	6,8
Andere	219	1,1	223	1,2	220	1,5	210	0,5		0,0
Autoimmunerkrankung: MS	1	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Autoimmunerkrankung: andere	1	0,0	4	0,0	2	0,0	5	0,0	4	0,0
andere Erkrankungen	5	0,0	10	0,1	8	0,1	14	0,2	14	0,1
Summe Andere	7	0,2	14	0,3	10	0,3	19	0,4	18	0,4
Gesamt	3079	100,0	3115	100,0	3037	100,0	3327	100,0	3332	100,0

Tabelle 3.5: Verteilung der Indikationen für allogene Ersttransplantationen von blutbildenden Stammzellen in Deutschland. Seit dem DRST/EBMT Survey on Transplant and Cellular Therapy Activity 2022 werden die NHL in Gruppen unterteilt, 2024 kamen weitere Gruppen hinzu.

Zur besseren Veranschaulichung wird nachfolgend die Entwicklung der Fallzahlen für die drei Hauptentitäten AML, ALL und MDS (inkl. MDS/MPN) plus MPN auch graphisch dargestellt.

Allogene Ersttransplantationen bei AML

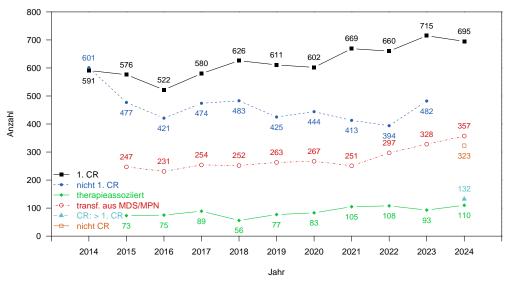


Abbildung 3.5: Entwicklung der Fallzahlen allogener Ersttransplantationen bei Patienten mit AML in frühem (1. CR) bzw. fortgeschrittenem (nicht 1. CR) Stadium, therapieassoziierter AML und AML transformiert aus MDS/MPN. Im DRST/EBMT Survey on Transplant and Cellular Therapy Activity 2015 wurde erstmals die therapieassoziierte AML als eigenständige Diagnose abgefragt und die AML transformiert aus MDS/MPN separat aufgeführt und nicht mehr zu MDS bzw. MPN gezählt (s. a. Abb. 3.7). Seit 2024 wird statt der bisherigen Gruppe "nicht 1. CR" in "CR: > 1. CR" und "nicht CR" unterteilt.

Allogene Ersttransplantationen bei ALL

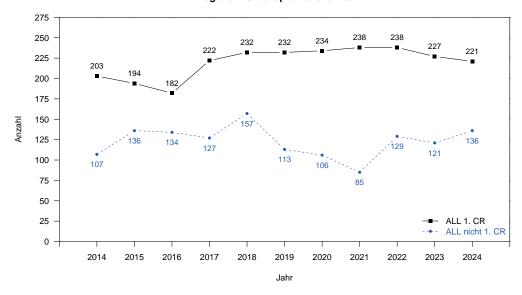


Abbildung 3.6: Entwicklung der Fallzahlen allogener Ersttransplantationen bei Patienten mit ALL in frühem (1. CR) und fortgeschrittenem (nicht 1. CR) Stadium.

Allogene Ersttransplantationen bei MDS (inkl. MDS/MPN) und MPN

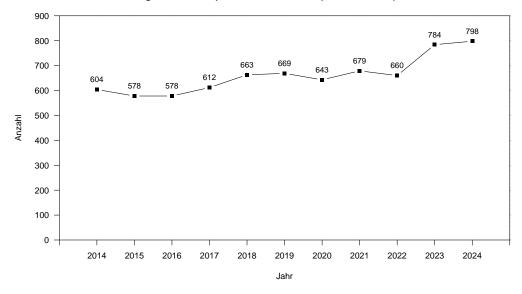


Abbildung 3.7: Entwicklung der Fallzahlen allogener Ersttransplantationen bei Patienten mit MDS (inkl. MDS/MPN) und MPN. AML transformiert aus MDS/MPN wird seit dem DRST/EBMT Survey on Transplant and Cellular Therapy Activity 2015 nicht mehr zu MDS bzw. MPN gezählt, sondern separat erfasst. (s. a. Abb. 3.5)

3.2.3 Spendertypen und Stammzellquellen

Tabelle 3.6 zu Spendertyp und Stammzellquelle bei allogener Ersttransplantation zeigt den kontinuierlich hohen Anteil der Transplantationen von Stammzellen unverwandter Spender und die gewohnt hohe Nutzung von peripherem Blut als Stammzellquelle. Im Gegensatz zu anderen europäischen Ländern spielt in Deutschland Nabelschnurblut als Stammzellquelle keine nennenswerte Rolle (s. Abbildung 3.20).

Zur besseren Veranschaulichung werden die wesentlichen Entwicklungen bezüglich Spendertyp und Stammzellquelle in den Abbildungen 3.8, 3.9, 3.10 und 3.11 auch graphisch dargestellt.

Spendertyp und Stammzellquelle verwandt HLA-id HLA-MM Zwilling KM PB CB KM PB CB KM PB KM PB CB KM PB KM PB CB CB CD CD CD CD CD C							Gesamt					
		verwandt							un	verwand	t	
	ŀ	HLA-id		H	HLA-MM			ling				
	KM	PB	СВ	KM	PB	CB	KM	PB	KM	PB	CB	
2014	122	523	2	63	131	0	0	3	235	1884	3	2966
2015	118	548	0	74	144	0	2	5	269	1895	0	3055
2016	108	539	0	83	148	0	1	1	242	1779	3	2904
2017	103	543	1	69	179	0	0	6	243	1969	0	3113
2018	117	527	0	73	188	0	1	2	261	2116	0	3285
2019	88	470	0	63	211	0	0	2	246	2073	5	3158
2020	98	443	0	54	259	0	1	4	179	2040	1	3079
2021	97	438	2	50	264	0	0	2	203	2057	2	3115
2022	80	354	0	40	271	0	0	2	193	2097	0	3037
2023	95	343	0	57	298	0	0	0	201	2332	1	3327
2024	84	289	0	30	288	0	0	1	210	2429	1	3332
Gesamt	1110	5017	5	656	2381	0	5	28	2482	22671	16	34371

Tabelle 3.6: Frequenzen allogener Ersttransplantationen in Deutschland, aufgeschlüsselt nach Spendertyp und Stammzellquelle.

Allogene Ersttransplantationen: Nutzung von Stammzellen verwandter und unverwandter Spender

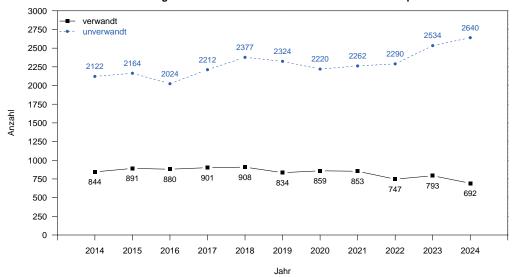


Abbildung 3.8: Transplantation von Stammzellen verwandter und unverwandter Spender bei allogenen Ersttransplantationen.

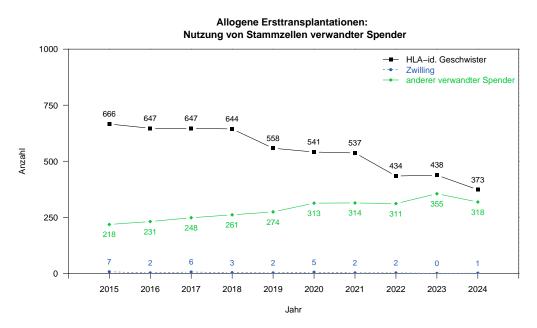


Abbildung 3.9: Transplantation von Stammzellen verwandter Spender bei allogenen Ersttransplantationen.

Allogene Ersttransplantationen: Nutzung von Knochenmark (KM) und peripherem Blut (PB) als Stammzellquelle

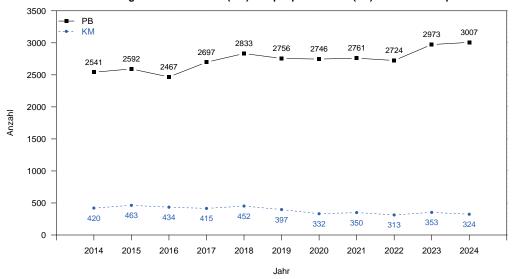


Abbildung 3.10: Nutzung von Knochenmark und peripherem Blut als Stammzellquelle bei allogenen Ersttransplantationen.

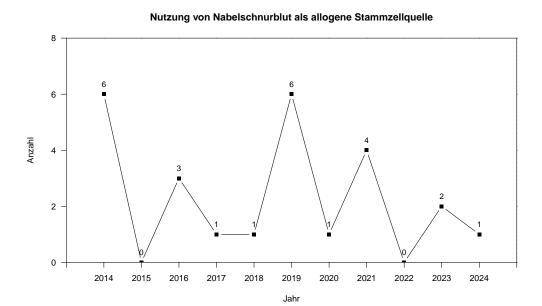


Abbildung 3.11: Einsatz von Nabelschnurblut als Stammzellquelle (allogene Erst- und Folgetransplantationen).

Tabelle 3.7 zeigt, dass die Auswahl der Stammzellquelle eine Abhängigkeit sowohl von der Grunderkrankung als auch vom Krankheitsstadium aufweist.

Stammzellquelle		M	F	В	(СВ	Gesamt
Diagnose/Stadium	N	%	N	%	N	%	
Leukämie							
AML 1. CR	40	5,8	655	94,2	0	0,0	695
AML CR: > 1. CR	12	9,1	119	90,2	1	0,8	132
AML nicht CR	7	2,2	316	97,8	0	0,0	323
AML therapieassoziiert	4	3,6	106	96,4	0	0,0	110
AML transformiert aus MDS/MPN	9	2,5	348	97.5	0	0,0	357
ALL 1. CR	19	8,6	202	91,4	0	0,0	221
ALL nicht 1. CR	33	24,3	103	75.7	0	0,0	136
CML 1. CP	0	0,0	27		0	0,0	27
CML nicht 1. CP	1	2,9	34	97.1	0	0,0	35
MDS	30	7,3	382	92,7	0	0,0	412
MDS/MPN	4	3,0	131	97,0	0	0,0	135
MPN	3	1,2	248	98,8	0	0,0	251
CLL	0	0,0	35		0	0,0	35
Lymphoproliferative Erkrankung		0,0	- 55	200,0			
Plasmazellerkrankung: Myelom	0	0,0	10	100,0	0	0,0	10
Plasmazellerkrankung: andere	0	0,0	1	100,0	0	0,0	3
Hodgkin-Lymphom	1	7,1	13	92,9	0	0,0	14
DLBCL	2	3,2	60	96,8	0	0,0	62
Mantelzell-Lymphom	0	0,0		100,0	0	0,0	2
Follikuläres Lymphom	0	0,0	3	100,0	0	0,0	3
PMBCL	0	0,0	4	100,0	0	0,0	4
andere B-Zell NHL	2	20,0	8	80,0	0	0,0	10
T-Zell NHL	5	5,6	85	94,4	0	0,0	90
Solider Tumor		•		· ·			
Neuroblastom	0	0,0	18	100,0	0	0,0	18
Weichteiltumor	0	0,0	1	100,0	0	0,0	1
anderer solider Tumor	0	0,0	1		0	0,0	1
Nicht Maligne Erkrankung		•		· ·			
Knochenmarkaplasie: SAA	35	67,3	17	32,7	0	0.0	52
Knochenmarkaplasie: andere	12	46,2	14	53,8	0	0,0	26
Thalassämie	20	62,5	12	37,5	0	0,0	32
Sichelzellanämie	26	63,4	15	36,6	0	0,0	41
primärer Immundefekt	39	67,2	19	32,8	0	0,0	58
angeborener Metabolismusdefekt	13	72,2	5	27,8	0	0,0	18
Andere		•				•	
Autoimmunerkrankung: andere	1	25,0	3	75,0	0	0,0	4
andere Erkrankungen	6	42,9	8	57,1	0	0,0	14
Gesamt	324	9,7	3007	90,2	1	0,0	3332

Tabelle 3.7: Stammzellquelle aufgeschlüsselt nach Diagnosen für die im Jahr 2024 durchgeführten allogenen Ersttransplantationen.

3.2.4 Spenderlymphozyteninfusionen (DLI)

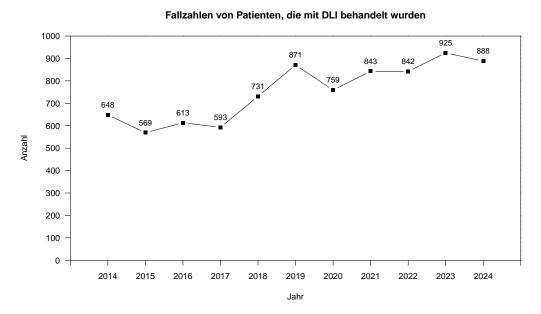


Abbildung 3.12: Nachbehandlung von Patienten mit Spenderlymphozyteninfusionen (DLI) bei allogenen Transplantationen.

3.3 Autologe Transplantationen in Deutschland

3.3.1 Entwicklung der Fallzahlen allgemein

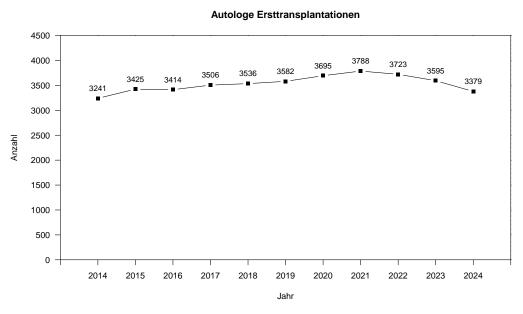


Abbildung 3.13: Entwicklung der Fallzahlen autologer Ersttransplantationen von blutbildenden Stammzellen in Deutschland.

3.3.2 Indikationen

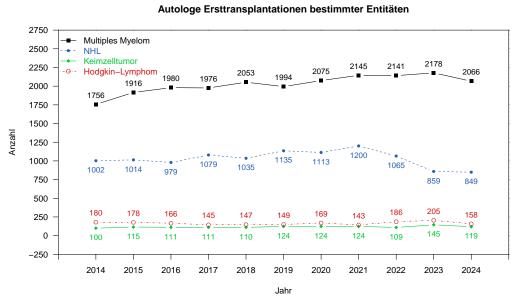


Abbildung 3.14: Entwicklung der Fallzahlen für die vier Entitäten, die in Deutschland am häufigsten Anlass zur Durchführung einer autologen Ersttransplantation gaben.

Tabelle 3.8 zeigt, dass auch im Jahr 2024 das Multiple Myelom mit 61,1% der Transplantationen die eindeutig führende Indikation für autologe Transplantationen darstellte, gefolgt von den Non-Hodgkin-Lymphomen mit 25,1%. Insgesamt entfielen mehr als 90% der autologen Transplantationen auf die Gruppe der lymphoproliferativen Erkrankungen.

Jahr)20	I)21)22	l)23)24
Diagnose/Stadium		%	N	%	N	%	N	%	N	%
Leukämie										
AML 1. CR	4	0,1	2	0,1	5	0,1	3	0,1	1	0,0
AML nicht 1. CR	1	0,0	2	0,1	2	0,1	0	0,0	0	0,0
AML CR: > 1. CR	0	0,0	0	0,0	0	0,0	0	0,0	1	0,0
AML therapieassoziiert	0	0,0	1	0,0	0	0,0	0	0,0	0	0,0
AML transformiert aus MDS/MPN	0	0,0	0	0,0	1	0,0	0	0,0	0	0,0
ALL 1. CR	0	0,0	0	0,0	0	0,0	1	0,0	0	0,0
ALL nicht 1. CR	0	0,0	0	0,0	0	0,0	2	0,1	0	0,0
MDS	0	0,0	1	0,0	1	0,0	0	0,0	0	0,0
MPN	0	0,0	0	0,0	0	0,0	0	0,0	1	0,0
CLL	2	0,1	4	0,1	0	0,0	1	0,0	2	0,1
Summe Leukämie	7	0,2	10	0,3	9	0,2	7	0,2	5	0,1
Lymphoproliferative Erkrankung										
Plasmazellerkrankung: Myelom	2075	56,2	2145	56,6	2141	57,5	2178	60,6	2066	61,1
Plasmazellerkrankung: andere	61	1,7	51	1,3	56	1,5	37	1,0	49	1,5
Hodgkin-Lymphom	169	4,6	143	3,8	186	5,0	205	5,7	158	4,7
Non-Hodgkin-Lymphom	1113	30,1	1200	31,7	0	0,0	0	0,0	0	0,0
DLBCL	0	0,0	0	0,0	513	13,8	410	11,4	442	13,1
Mantelzell-Lymphom	0	0,0	0	0,0	0	0,0	0	0,0	95	2,8
Follikuläres Lymphom	0	0,0	0	0,0	0	0,0	0	0,0	40	1,2
PMBCL	0	0,0	0	0,0	0	0,0	0	0,0	5	0,1
andere B-Zell NHL	0	0,0	0	0,0	364	9,8	320	8,9	86	2,5
T-Zell NHL	0	0,0	0	0,0	188	5,0	129	3,6	181	5,4
Summe Lymphoproliferative Erkrankung	3418	92,5	3539	93,4	3448	92,6	3279	91,2	3122	92,4
Solider Tumor										
Neuroblastom	54	1,5	42	1,1	58	1,6	48	1,3	41	1,2
Weichteiltumor	1	0,0	2	0,1	1	0,0	4	0,1	0	0,0
Ewing-Sarkom	33	0,9	28	0,7	26	0,7	24	0,7	11	0,3
Keimzelltumor	124	3,4	124	3,3	109	2,9	145	4,0	119	3,5
anderer solider Tumor	35	0,9	21	0,6	32	0,9	36	1,0	24	0,7
Summe Solider Tumor	247	6,7	217	5,7	226	6,1	257	7,1	195	5,8
Nicht Maligne Erkrankung										
Knochenmarkaplasie: SAA	0	0,0	0	0,0	0	0,0	1	0,0	0	0,0
Thalassämie	3	0,1	7	0,2	5	0,1	2	0,1	1	0,0
Sichelzellanämie	1	0,0	0	0,0	0	0,0	1	0,0	0	0,0
angeborener Metabolismusdefekt	1	0,0	0	0,0	0	0,0	0	0,0	5	0,1
Summe Nicht Maligne Erkrankung	5	0,1	7	0,2	5	0,1	4	0,1	6	0,2
Andere		· · ·		<u> </u>		•		•		<u> </u>
Autoimmunerkrankung: MS	5	0,1	5	0,1	19	0,5	31	0,9	44	1,3
Autoimmunerkrankung: SSC	9	0,2	3	0,1	11	0,3	13	0,4	4	0,1
Autoimmunerkrankung: SLE	0	0,0	0	0,0	0	0,0	0	0,0	1	0,0
Autoimmunerkrankung: andere	4	0,1	5	0,1	5	0,1	3	0,1	2	0,1
andere Erkrankungen	0	0,0	2	0,1	0	0,0	1	0,0	0	0,0
Summe Andere	18	0,5	15	0,4	35	0,9	48	1,3	51	1,5
Gesamt	3695	100,0	3788	100,0	3723	100,0	3595	100,0	3379	100,0
Gesaint	2093	100,0	3100	100,0	3123	100,0	2090	100,0	3319	100,0

Tabelle 3.8: Verteilung der Indikationen für autologe Ersttransplantationen von blutbildenden Stammzellen in Deutschland. Seit dem DRST/EBMT Survey on Transplant and Cellular Therapy Activity 2022 werden die NHL in Gruppen unterteilt, 2024 kamen weitere Gruppen hinzu.

3.4 Deutschland im Vergleich mit sieben anderen europäischen Ländern

Die den nachfolgenden Abbildungen zugrunde liegenden Survey-Daten wurden dem DRST freundlicherweise vom EBMT Transplant Activity Survey Team zur Verfügung gestellt.

3.4.1 Allogene Transplantationen

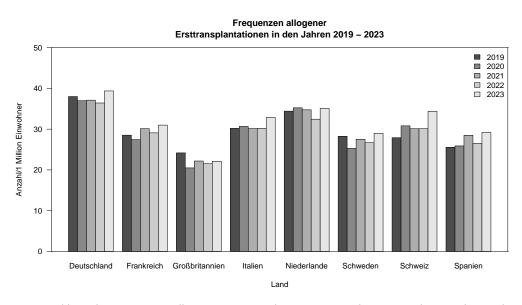


Abbildung 3.15: Entwicklung der Frequenzen allogener Ersttransplantationen in acht europäischen Ländern in den Jahren 2019 bis 2023. Dargestellt ist die Gesamtfrequenz allogener Transplantationen pro Jahr bezogen auf eine Million Einwohner.

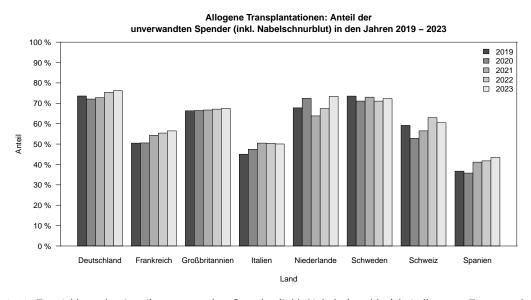


Abbildung 3.16: Entwicklung des Anteils unverwandter Spender (inkl. Nabelschnurblut) bei allogenen Ersttransplantationen in acht europäischen Ländern in den Jahren 2019 bis 2023.

Anteil der allogenen Transplantationen mit nicht-myeloablativem Konditionierungsprotokoll in den Jahren 2019 – 2023

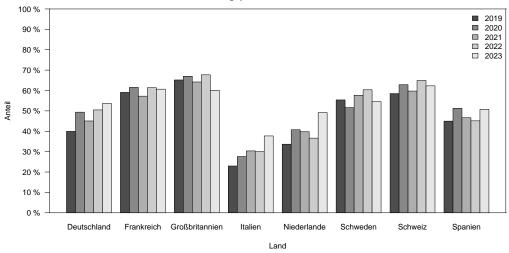


Abbildung 3.17: Einsatz nicht-myeloablativer Konditionierungsprotokolle bei allogenen Transplantationen in acht europäischen Ländern in den Jahren 2019 bis 2023. Die angegebenen Prozentsätze beziehen sich auf die Gesamtzahl der durchgeführten allogenen Transplantationen.

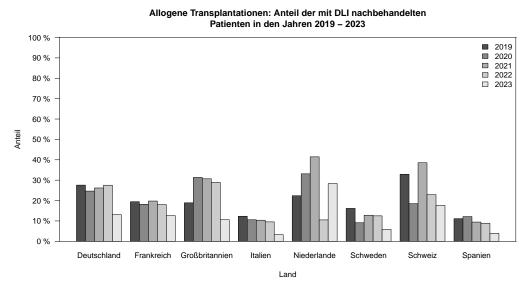


Abbildung 3.18: Einsatz von Spenderlymphozyteninfusionen (DLI) nach allogenen Transplantationen in acht europäischen Ländern in den Jahren 2019 bis 2023. Angegeben ist der Prozentsatz der Patienten, die nach allogener Transplantation mit DLI nachbehandelt wurden.

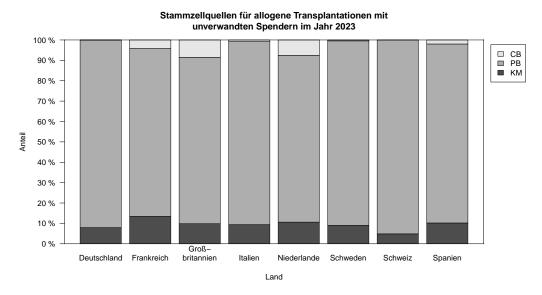
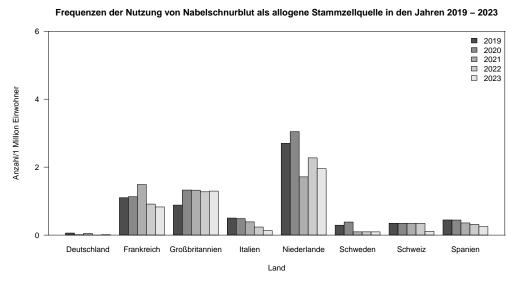
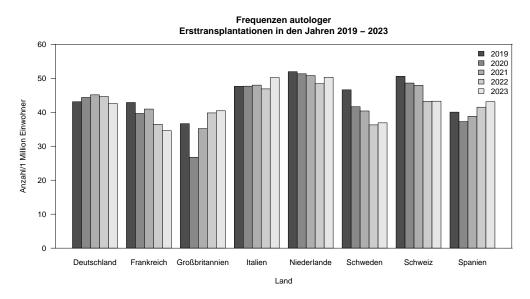


Abbildung 3.19: Stammzellquellen für allogene Ersttransplantationen im Jahr 2023 in acht europäischen Ländern.




Abbildung 3.20: Einsatz von Nabelschnurblut als allogene Stammzellquelle in acht europäischen Ländern in den Jahren 2019 bis 2023. Dargestellt ist die Gesamtfrequenz der Ersttransplantationen mit Nabelschnurblut pro Jahr bezogen auf eine Million Einwohner.

Jahr	/Land	Deutsch-	Frankreich	Groß-	Italien	Nieder-	Schweden	Schweiz	Spanien	Gesamt
		land		britannien		lande				
	2019	2756	1333	1317	1267	469	238	194	999	8573
	2020	2748	1346	1146	1393	483	223	227	1100	8666
PB	2021	2742	1458	1215	1427	499	256	227	1207	9031
	2022	2724	1427	1218	1453	466	234	241	1121	8884
	2023	2973	1605	1261	1670	508	264	282	1237	9800
	2019	397	433	239	506	83	50	43	184	1935
	2020	330	351	140	403	77	36	35	106	1478
KM	2021	349	389	189	335	79	32	32	130	1535
	2022	313	393	148	315	65	45	18	126	1423
	2023	353	398	170	278	85	42	23	149	1498
	2019	5	71	59	30	47	3	3	21	239
	2020	1	73	89	29	53	4	3	21	273
СВ	2021	4	96	89	23	30	1	3	17	263
	2022	0	59	86	14	40	1	3	15	218
	2023	1	55	89	8	35	1	1	12	202
Gesa	mt	15696	9487	7455	9151	3019	1430	1335	6445	54018

Tabelle 3.9: Absolute Anzahl der allogenen Ersttransplantationen in acht europäischen Ländern aufgeschlüsselt nach Stammzellquelle in den Jahren 2019 bis 2023.

Die Stammzellquelle von eineiigen Zwillingen wird kumuliert erfasst und in dieser Tabelle unter PB ausgegeben.

3.4.2 Autologe Transplantationen

Abbildung 3.21: Entwicklung der Frequenzen autologer Ersttransplantationen in acht europäischen Ländern in den Jahren 2019 bis 2023. Dargestellt ist die Gesamtfrequenz autologer Transplantationen pro Jahr bezogen auf eine Million Einwohner.

Jahr	/Land	Deutsch-	Frankreich	Groß-	Italien	Nieder-	Schweden	Schweiz	Spanien	Gesamt
		land		britannien		lande				
	2019	3578	2760	2448	2826	904	480	435	1883	15314
	2020	3694	2556	1794	2820	893	433	418	1765	14373
PB	2021	3763	2641	2368	2836	889	424	417	1842	15180
	2022	3719	2352	2686	2761	852	379	376	1974	15099
	2023	3594	2292	2777	2984	900	391	385	2063	15386
	2019	4	1	0	18	0	0	0	3	26
	2020	1	1	0	17	0	0	0	1	20
KM	2021	1	0	1	5	0	0	0	1	8
	2022	4	2	1	5	0	2	0	1	15
	2023	1	3	1	3	0	0	0	1	9
Gesa	mt	18359	12608	12076	14275	4438	2109	2031	9534	75430

Tabelle 3.10: Absolute Anzahl der autologen Ersttransplantationen in acht europäischen Ländern aufgeschlüsselt nach Stammzellquelle in den Jahren 2019 bis 2023.

3.5 CAR-T-Zell-Therapien in Deutschland

CAR-T-Zell-Therapien in Deutschland werden seit 2018 im "Survey on Transplant and Cellular Therapy Activity" erfasst und bis Ende 2024 sind dort 4341 CAR-T-Zell-Therapien von den deutschen Zentren gemeldet worden.

Die Zahlen aus dem Activity Survey zeigen, dass für die Non-Hodgkin-Lymphome im Jahr 2024 (n = 661) keine weitere Steigerung der Fallzahlen im Vergleich zu 2023 gesehen wurde. Die Anzahl der CAR-T-Zell-Therapien für das Multiple Myelom, für welches die CAR-T-Zell-Therapie später als für das NHL zugelassen wurde, stieg in 2024 (n = 554) dagegen weiter an, und bei erfolgter Zulassung in der 2. Linie ist hier mit einem weiteren Zuwachs zu rechnen. Mit Ausdehnung der CAR-T-Zell-Therapien auf andere onkologische Erkrankungen und auch Autoimmunerkrankungen kann hier ein weiterer Anstieg der Fallzahlen in den nächsten Jahren erwartet werden.

Diagnose	agnose 2020		2021		2022		2023		2024		Gesamt
	autolog	allogen	autolog	allogen	autolog	allogen	autolog	allogen	autolog	allogen	
Autoimmunerkrankung	0	0	4	0	8	0	31	0	49	0	92
Malignom: ALL	39	0	46	3	41	1	73	3	60	1	267
Malignom: Lymphom	318	1	335	1	390	1	666	0	661	0	2373
Malignom: Myelom	0	0	0	0	191	0	342	0	554	0	1087
Malignom: anderes	18	0	48	0	0	0	0	0	0	0	66
andere Indikation	0	0	0	0	27	0	45	0	84	1	157
Gesamt	375	1	433	4	657	2	1157	3	1408	2	4042

Tabelle 3.11: Verteilung der Indikationen für CAR-T-Zell-Therapien in Deutschland (Quelle: Survey on Transplant and Cellular Therapy Activity).

In den Surveys 2019 bis 2021 wurden Malignome getrennt nach ALL, Lymphom und anderes abgefragt. Ab dem Survey 2022 wurde die Diagnose Myelom separat abgefragt. Die Diagnosegruppe "Malignom: anderes" gibt es seit 2022 nicht mehr, in der neuen Diagnosegruppe "andere Indikation" wurden 2022 und 2023 alle Diagnosen gemeldet, die nicht separat abgefragt wurden.

Bis zum Survey 2023 wurde die Anzahl der Patienten abgefragt, die im Surveyjahr eine oder mehrere CAR-T-Zell-Therapien erhalten haben. Ab dem Survey 2024 werden Erst- und zusätzliche CAR-T-Zell-Therapien getrennt erfasst und die Diagnosen bei Erst-CAR-T-Zell-Therapie so differenziert wie bei den Transplantationen gemeldet. Für die Vergleichbarkeit der einzelnen Jahre wurden die Zahlen von 2024 für die Erst-CAR-T-Zell-Therapien in die vorher bestehenden Diagnosegruppen eingeteilt, die zusätzlichen CAR-T-Zell-Therapien sind in der Tabelle nicht enthalten.

Durch den Beschluss des Gemeinsamen Bundesausschusses (G-BA) bezüglich CAR-T-Zell-Produkten müssen die Ergebnisse der kommerziellen und zugelassenen CAR-T-Zell-Therapien im DRST/EBMT-Register dokumentiert werden. Dort sind Stand 15.07.2025 3831 CAR-T-Zell-Therapien von den Zentren erfasst worden.

Diagnose	2020	2021	2022	2023	2024	Gesamt
Akute Leukämie (AL)						
ALL	15	16	24	37	32	124
AML	1	0	1	1	0	3
andere AL	0	0	0	2	2	4
Chronische Leukämie (CL)						
CLL/SLL/Richter	2	2	0	4	4	12
PLL und andere CL	0	0	1	0	0	1
Lymphom						
NHL	266	279	339	561	543	1988
Hodgkin-Lymphom	0	1	1	0	0	2
anderes Lymphom	6	3	4	11	11	35
Plasmazellneoplasie inkl. MM	7	7	166	303	503	986
Solider Tumor	0	4	2	8	2	16
Autoimmunerkrankung	0	4	8	11	10	33
Gesamt	297	316	546	939	1107	3205

Tabelle 3.12: Anzahl der im EBMT Registry dokumentierten ersten und zusätzlichen CAR-T-Zell-Therapien, die in Deutschland zwischen 2020 und 2024 durchgeführt wurden, aufgeschlüsselt nach Jahr und Diagnose.

Wissenschaftliche Auswertungen sind mit Antragstellung möglich. Nationale "Real-World-Analysen" sind erfolgt, zuletzt über das Multiple Myelom und in der Zeitschrift Blood veröffentlicht (siehe Kap. 4.2).

Anhang E gibt eine Übersicht über die Standorte, in denen CAR-T-Zell-Therapien durchgeführt wurden.

3.6 Informationen zum Pädiatrischen Register für Stammzelltransplantation und Zelltherapie

Beitrag von Dr. Rita Beier für das Team des PRSZT (Dr. Barbara Meissner, Kirsten Mischke, Dr. Martin Zimmermann, Oliver Rossol und Hartmut Ehlerding)

Das Pädiatrische Register für Stammzelltransplantation und Zelltherapie (PRSZT) ist ein zentrales Projekt der Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH) und dient der systematischen Erfassung sämtlicher Stammzelltransplantationen und Zelltherapien bei Kindern und Jugendlichen in Deutschland. Die Datenerhebung erfolgt über die internetbasierte Plattform MARVIN, wobei inzwischen eine Meldequote im Median von 95 % aller in Deutschland in pädiatrischen Zentren durchgeführten allogenen und autologen Stammzelltransplantationen und Zelltherapien erreicht werden kann. Die im PRSZT dokumentierten Daten werden an das Europäische Register für Stammzelltransplantation (EBMT) weitergeleitet. Ein besonderes Augenmerk liegt auf der Wahrung der Datenhoheit: Für Patientinnen und Patienten, die an aktuellen klinischen Studien teilnehmen, werden an die EBMT zunächst nur stark eingeschränkte Datensätze übermittelt. Erst nach Abschluss der jeweiligen Studien erfolgt eine vollständige Datenübertragung. Dadurch wird sichergestellt, dass Studien- und Registerpatienten nicht vorzeitig in laufende Auswertungen der EBMT einfließen und die Kontrolle über die Daten beim PRSZT im Auftrag der GPOH verbleibt. Trotz regelmäßiger Datenübermittlungen konnten die PRSZT-Daten bislang weiterhin noch nicht vollständig in die neue EBMT-Datenbank integriert werden; das PRSZT-Team arbeitet kontinuierlich an der Optimierung dieses Prozesses.

Die Anzahl der dokumentierten jeweils ersten allogenen oder autologen hämatopoetischen Stammzelltransplantationen (HSZT) ist im Zeitraum von 2014 bis 2023 deutlich angestiegen: Während im Jahr 2014 insgesamt 365 Transplantationen und Zelltherapien gemeldet wurden, konnten im Jahr 2023 bereits 487 Transplantationen und Zelltherapien erfasst werden (vgl. Tabelle 1). Das Jahr 2024 ist nicht komplett erfasst, so dass die Zahl noch nicht abschließend bewertet werden kann. Inzwischen werden auch Gentherapien und CAR-T-Zell-Therapien im PRSZT dokumentiert, wobei für die CAR-T-Zell-Therapien ein ausführlicher Datensatz generiert wird.

Die Zusammenführung der Daten für Jahresberichte sowie für wissenschaftliche Auswertungen erfolgt durch das PRSZT in enger Abstimmung mit den Leitungen von insgesamt zwölf beteiligten Studien und Registern (vgl. Tabelle 2). Auf diese Weise stehen Datensätze zu mehr als 5 000 allogenen und autologen Transplantations- und Zelltherapieverfahren zur Verfügung. In den vergangenen Jahren zeigte sich insbesondere die Eingabe der HLA-Typisierung sowie spezieller Diagnosen (z.B. bei Immundefekten) als herausfordernd für die dokumentierenden Zentren (derzeit 30 Zentren). Zur Sicherung und Verbesserung der Datenqualität wurde ein gezieltes Monitoring dieser Felder etabliert, das bereits zu einer deutlichen Qualitätssteigerung geführt hat.

Das PRSZT erfasst neben pädiatrischen Transplantationen auch Stammzelltransplantationen und Zelltherapien, die in pädiatrischen Zentren bei erwachsenen Patientinnen und Patienten durchgeführt werden. Hierbei handelt es sich meist um Personen mit angeborenen Erkrankungen (z. B. Immundefekte, Hämoglobinopathien) oder um Patientinnen und Patienten mit Leukämien, die bereits im Kindes- oder Jugendalter onkologisch behandelt wurden. Pro Jahr werden etwa zehn erwachsene Patientinnen und Patienten in pädiatrischen Zentren einer ersten allogenen Stammzelltransplantation unterzogen (vgl. Tabelle 3).

Die Auswertung der allogenen Stammzelltransplantationen bei Patientinnen und Patienten mit Sichelzellanämie wird im laufenden Jahr abgeschlossen. Die hierfür notwendige Datenerhebung erfolgte in enger Zusammenarbeit mit den beteiligten Zentren und war mit einem erheblichen Arbeitsaufwand verbunden.

Das integrierte CAR-T-Zell-Register erfasst inzwischen kontinuierlich pädiatrische CAR-T-Zell-Therapien. In Kombination mit der bereits zuvor etablierten Zelltherapieerfassung konnten so bislang deutlich mehr als 100 pädiatrische CAR-T-Zell-Therapien erfasst werden. Die Dokumentation gestaltet sich komplex und erforderte umfangreiche Schulungen der beteiligten Zentren.

Das PRSZT unterstützt weiterhin wissenschaftliche Anfragen und Auswertungen von pädiatrisch-onkologischen Kolleginnen und Kollegen sowie Kliniken. Die Zahl der Anfragen ist in den letzten Jahren deutlich gestiegen, was die wachsende Sichtbarkeit und Relevanz des Registers unterstreicht. Im aktuellen Berichtsjahr konnten insgesamt sieben weitere Anträge und Auswertungen unterstützt werden.

Jahr der SZT	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Transplantationsart											
allogen	291	316	288	312	346	356	345	359	374	391	359
autolog	74	78	70	76	70	86	114	82	107	96	74
Diagnose											
Akute Leukämie	106	120	105	118	151	106	129	121	156	144	147
SAA/BMF	15	24	19	19	12	17	13	25	24	27	17
Autoimmunerkrankung	3	3	3	7	4	8	8	10	3	10	10
CML	1	1	1	4	1	0	2	5	2	1	2
Hämoglobinopathie	22	34	28	32	48	69	42	62	65	60	63
Histiocytäre Erkrankung	14	8	7	10	14	11	2	8	7	6	10
Angeborene Erkrankung	48	43	49	56	60	79	78	77	64	62	62
Lymphom	14	21	21	14	27	28	19	28	15	20	13
MDS	58	65	59	50	37	44	53	43	48	62	39
Plasmazellerkrankung	1										
Solider Tumor	83	75	66	78	62	80	113	62	97	95	70

Tabelle 1: Anzahl der HSZT in den Jahren 2014 bis 2024

			ALL SCT Forum Registry	ALL SCTped 2012	AML SCT- BFM	AML SCT- BFM	DBA	EURO HIT	EWOG-	EWOG-		SCID- SZT	Seltene Anämien	SZ-
Jahr	Total	Other	2022	FORUM	2007	Register	2000	HLA	2006	2010	PRSZT	2016		Register
2014	418	0	0	16	20	0	0	5	67	9	301	0	0	0
2015	474	0	0	48	29	0	4	1	78	13	295	0	0	6
2016	413	0	0	45	0	4	3	0	68	8	278	1	0	6
2017	461	0	0	66	2	17	5	0	51	9	298	0	0	13
2018	480	0	0	70	0	18	1	0	39	5	323	10	2	12
2019	504	0	0	14	0	12	2	0	45	12	372	22	0	25
2020	541	0	0	55	2	7	1	0	61	10	377	15	3	10
2021	509	1	0	53	0	1	3	0	41	6	373	12	3	16
2022	550	0	6	28	0	0	2	0	49	9	418	10	5	23
2023	577	1	50	0	0	0	1	0	42	6	434	13	5	25
2024	510	0	58	0	0	0	0	0	5	0	414	8	2	23
Total	5437	2	114	395	53	59	22	6	546	87	3883	91	20	159

Tabelle 2: Zusammenfassung der Herkunft der Patienten aus den verschiedenen pädiatrischen Studien und Registern aus den Jahren 2014 bis 2024

Alter	unbekannt	0-5 Jahre	6-11 Jahre	12-17 Jahre	>= 18 Jahre
Jahr der SZT					
2014		101	83	96	11
2015		112	84	97	23
2016		104	92	85	7
2017		122	97	81	12
2018		128	102	108	8
2019		144	101	94	17
2020		142	99	93	11
2021	1	153	94	95	16
2022		144	125	88	17
2023	1	159	120	101	10
2024	1	143	112	95	8
Gesamt	3	1452	1109	1033	140

Tabelle 3: Altersverteilung bei den allogenen Stammzelltransplantation aus den verschiedenen pädiatrischen Studien und Registern aus den Jahren 2014 bis 2024

4 Förderung nationaler klinischer Studien

4.1 Antragstellung

Wenn Sie eine klinische Studie oder retrospektive Auswertungen planen, bietet das DRST an, Sie mit Daten aus dem EBMT Registry, Auswertungen und statistischem Know-how zu unterstützen. Wenden Sie sich bitte mit einer kurzen Projektbeschreibung an die Datenzugriffskommission (DZK) des DRST, am besten per E-Mail an support@drst.de.

Füllen Sie dafür bitte das entsprechende Antragsformular aus, das Sie sowohl auf der DRST-Webseite als auch auf der DAG-HSZT-Webseite finden können und das unter anderem folgende Angaben zu der von Ihnen geplanten Studie enthalten muss:

- Kontaktdaten der Antragsteller
- Titel Ihrer geplanten Studie
- Projektbeschreibung (Fragestellung/Zielsetzung, Stand der Forschung, eigene Vorarbeiten)
- Beschreibung des Studienkollektivs

Nach einer Überprüfung der Datenlage im DRST wird Ihr Antrag an alle Mitglieder der DZK (bestehend aus den Vorstandsmitgliedern des DRST und der DAG-HSZT) verschickt. Sollten Einwände oder Verbesserungsvorschläge vorgebracht werden, ist ggf. eine Anpassung des Studienantrags nötig. Sie werden abschließend vom DRST über die Genehmigung Ihrer Studie informiert.

Auf der Basis der DRST-Daten wurden auch im letzten Jahr wieder Auswertungen durchgeführt. Auf den folgenden Seiten sind in 2024/2025 publizierte bzw. laufende Projekte aufgelistet, die mit DRST- und zum Teil auch PRSZT-Daten durchgeführt werden bzw. wurden. In Anlage C sind ausschließlich Publikationen aus dem Berichtsjahr gelistet.

4.2 Publizierte Studien

Nr.	Studientitel	Antragsteller	Publikation
DRST-02	Schwangerschaft nach allogener	K. Sockel	Sockel K, Neu A, Goeckenjan M, et al.
-2018	Stammzelltransplantation in	J. Schetelig	Hope for motherhood: pregnancy after allogeneic
ı	Deutschland – ein nationaler	(beide	hematopoietic cell transplantation (a national
ı	Survey	Dresden)	multicenter study).
ı	-	,	Blood 2024. doi: 10.1182/blood.2024024342
DRST-03	Allogene Stammzelltransplantation	N. Gagelmann	Gagelmann N, Schuh C, Zeiser R, et al.
-2023	für Myelofibrose-Patienten > 70	N. Kröger	Allogeneic Hematopoietic Cell Transplantation for
ı	Jahre	(beide	Myelofibrosis Aged 70 Years or Older: A Study from
		Hamburg)	the German Registry for Stem Cell Transplantation.
ı		-	Transplant Cell Ther 2024.
ı			doi: 10.1016/j.jtct.2024.07.026
DRST-02	Treosulfan-Fludarabin- versus	N. Gagelmann	Gagelmann N, Schuh C, Flossdorf S, et al.
-2023	Busulfan-Fludarabin-	N. Kröger	Impact of busulfan versus treosulfan dose intensity in
ı	Konditionierung vor allogener	(beide	myelofibrosis undergoing hematopoietic cell
ı	Stammzelltransplantation bei	Hamburg)	transplantation.
ı	Myelofibrose	σ,	Am J Hematol 2024. doi: 10.1002/ajh.27363
DRST-05	Nachträgliche Datenerhebung für	J. Finke	Finke J, Schmoor C, Ayuk F, et al.
	die bereits abgeschlossene	(Freiburg)	Long term results of a prospective multicenter
ı	Beobachtungsstudie zur Prävention	,	observational study on the use of anti-human
ı	der GvHD mit ATG Fresenius bei		T-lymphocyte immunoglobulin (ATLG) in unrelated
	Patienten mit allogener		donor transplantation (ATOS study).
	Stammzelltransplantation		Bone Marrow Transplant. 2024.
	·		doi: 10.1038/s41409-024-02264-9
DRST-01	Feasibility, toxicity, and efficacy of	M. Christopeit	Weller JF, Lengerke C, Finke J, et al.
-2021	allogeneic stem cell transplantation	L. Kaufmann	Allogeneic hematopoietic stem cell transplantation in
	patients ≥ 70 years compared to	(beide	patients aged 60-79 years in Germany (1998-2018): a
	younger patients	Tübingen)	registry study.
		_ ,	Haematologica 2024.
ı			doi: 10.3324/haematol.2023.283175
DRST-07	Validierung eines Modells zur	J. Schetelig	Fein JA, Shouval R, Krieger E, et al.
-2020	Vorhersage klinischer Endpunkte	(Dresden)	Systematic evaluation of donor-KIR/recipient-HLA
ı	nach allogener SZT für Patienten	J. Koreth	interactions in HLA-matched hematopoietic cell
ı	mit AML/MDS basierend auf KIR	(Boston)	transplantation for AML.
ı	Genotyp Information.		Blood Adv. 2024.
			doi: 10.1182/bloodadvances.2023011622
DRST-01	Die Bedeutung von KIR2DS4,	D. Fürst	Amann EM, Gowdavally S, Tsamadou C, et al.
-2022	MICB und HLA-G Polymorphismen	J. Mytilineos	The impact of MICB mismatches in unrelated
	sowie rs2204985 für den Erfolg der	(beide Ulm)	haematopoietic stem cell transplantation.
ı	unverwandten		HLA 2024. doi: 10.1111/tan.15584
	${\sf Blutstammzell transplantation}$		
DRST-03	Vergleich Haplo-Tx Protokolle mit	D. Fürst	Arslan A, Labuhn S, Sala E, et al.
-2022	10/10 identer unverwandter	J. Beyersmann	Outcomes of haploidentical transplants with PT-CY
	Blutstammz elltransplantation	(beide Ulm)	vs 10/10 MUD transplants with ATG in Germany.
	(Matched Pair	_	Blood Adv. 2024.
	Registerdatenanalyse)		doi: 10.1182/bloodadvances.2024013719
DRST-01	Benchmarkanalyse zur Evaluation	W. Bethge	Bethge W, Flossdorf S, Hanke F, et al.
	von zentrumsbezogener	(Tübingen)	Does size matter? Center-specific characteristics and
	Einflussfaktoren auf das Ergebnis	P. Dreger	survival after allogeneic hematopoietic cell
	einer allogenen	(Heidelberg)	transplantation for acute myeloid leukemia: an
	Stammzelltransplantation bei		analysis of the German Registry for Stem Cell
	Patienten nach allogener		Transplantation and Cell Therapy.
	ratienten nach anogener		Transplantation and Cen Therapy.
	Ersttransplantation vom Fremd-		Haematologica 2025.

Nr.	Studientitel	Antragsteller	Publikation
DRST-11	Allogene Stammzelltransplantation	E. Jost	Lübke J, Christen D, Schwaab J, et al.
-2021	inklusive Vor- und	J. Panse	Allogeneic Hematopoietic Cell Transplantation in
	Nachbehandlungsdaten bei	D. Christen	Advanced Systemic Mastocytosis: A retrospective
	Patient*innen mit fortgeschrittener	(alle Aachen)	analysis of the DRST and GREM registries
	Mastozytose (Aggressive	J. Lübke	Leukemia 2024.
	Systemische Mastozytose (ASM),	A. Reiter	doi: 10.1038/s41375-024-02186-x
	Mastzellleukämie, Systemische	(beide	
	Mastozytose mit assoziierter	Mannheim)	
	hämatologischer Neoplasie		
	(SM-AHN))		
DRST-05	Artificial intelligence and causal	M. Merz	Grieb N, Oeser A, Ferle M, et al.
-2022	inference to identify patients with	N. Grieb	Artificial intelligence and causal inference to identify
	early relapse or long-term survival	A. Kubasch	patients with early relapse or long-term survival after
	after autologous stem cell	U. Platzbecker	autologous stem cell transplantation for newly
	transplantation for newly	(alle Leipzig)	diagnosed multiple myeloma
	diagnosed multiple myeloma		Bone Marrow Transplant. 2025.
			doi: 10.1038/s41409-024-02490-1
DRST-05	Outcome von Patienten mit	T. Schroeder	Schroeder T, Flossdorf S, Schuh C, et al.
-2021	IDH1/2-mutierter AML nach	C. Rautenberg	Outcome of Patients With IDH-Mutated AML
	allogener	(beide Essen)	Following Allogeneic Stem Cell Transplantation-A
	${\sf Blutstammzelltransplantation}$		Retrospective Analysis on Behalf of the German
			Registry for Hematopoietic Stem Cell Transplantation
			and Cell Therapy, DRST
			Transplant Cell Ther. 2025.
			doi: 10.1016/j.jtct.2025.02.018
DRST-01	Real World Analyse zu CAR-T	M. Merz	Merz M, Gagelmann N, Smaili S, et al.
-2024	Zelltherapie bei Multiplem Myelom	(Leipzig)	Remission conversion drives outcomes after CAR
	in Deutschland	N. Gagelmann	T-cell therapy for multiple myeloma: a registry
		N. Kröger	analysis from the DRST
		(beide	Blood. 2025
		Hamburg)	doi: 10.1182/blood.2025028330
			siehe Kapitel 4.3.7

4.3 Laufende Studien

Nr.	Studientitel	Antragsteller	Status
DRST-03	Allogeneic transplantation for therapy-related	T. Schroeder	Daten in Auswertung
-2017	myeloid neoplasms – Outcome analysis with	(Essen)	siehe JB 2021, Kapitel 4.2.1
	regard to the primary malignancy and the	G. Kobbe	
	therapy-related myeloid disorder	(Düsseldorf)	
DRST-01	Bedeutung von Donorlymphozyteninfusionen nach	N. Jäkel	Daten in Auswertung
-2018	allogener Stammzelltransplantation bei adulten	L. Müller	siehe JB 2020, Kapitel 4.2.3
	Patienten mit Akuter Lymphatischer Leukämie	(beide Halle)	
DRST-00	Multizentrische, retrospektive Analyse zum	M. Bornhäuser	Dissertation in Arbeit
-2020	ereignisfreien Überleben von allogen	M. Meichsner	siehe Kapitel 4.3.1
	stammzelltransplantierten Patienten mit	(beide Dresden)	
	rezidivierter chronischer myeloischer Leukämie		
DRST-01	Validierung eines Prognosescores für die	A. Turki	Manuskript in Arbeit
-2020	Post-transplant lymphoproliferative Erkrankung	D. Beelen	
	(PTLD) nach allogener Stammzelltransplantation	(beide Essen)	
DRST-02	Retrospektive Analyse der DRST Registerdaten	I. Hilgendorf	Manuskript in Arbeit
-2020	zum Überleben Heranwachsender und junger	J. Beck	siehe Kapitel 4.3.11
	Erwachsenen (AYA) nach allogener	(beide Jena)	
	Stammzelltransplantation in Deutschland	J. Frietsch	Publikation:
		(Würzburg)	Frietsch JJ, et al.
			Outcomes after allogeneic
			haematopoietic stem cell
			transplantation in young adults in
			Germany
			Br J Haematol. 2023.
			doi: 10.1111/bjh.18610

Nr.	Studientitel	Antragsteller	Status
DRST-03	Untersuchung des Einflusses genetischer	J. Schetelig	Datensammlung
-2020	Polymorphismen für die intrazelluläre	(Dresden)	
	Signalweitergabe bei akuter Transplantat gegen	R. Zeiser	
	Wirt Erkrankung	(Freiburg)	
DRST-04	Retrospektive Analyse zur Evaluation von NK Zell	J. Schetelig	Datensammlung
-2020	Rezeptor - Ligand Kombinationen für die Auswahl	(Dresden)	_
	unverwandter Stammzellspender	K. Fleischhauer	
		(Essen)	
DRST-03	Retrospective analysis of allogeneic hematopoietic	M. Christopeit	Manuskript in Arbeit
-2021	stem cell transplantation (HSCT) in the	(Hamburg)	siehe Kapitel 4.3.2
	treatment of relapse of myeloid neoplasia after a	J. Weller	
	first allogeneic HSCT	(Tübingen)	
		C. Schmid	
		(Augsburg)	
DRST-07	Evaluierung der Stammzelltransplantation als	L. Wahnschaffe	Daten in Auswertung
-2021	einzig potentiell kurative Therapielinie in der	(Köln)	siehe Kapitel 4.3.4
	T-Zell Prolymphozytenleukämie	M. Herling	
		(Leipzig)	
		P. Dreger	
DRST-08	Salvage Therapy with Inotuzumab ozogamicin	(Heidelberg) N. Alakel	Manuskript in Arbeit
-2021	before or after allogeneic stem cell	(Riesa)	Manuskript in Arbeit
-2021	transplantation, Real World Outcomes	M. Stelljes	
	transplantation, iteal world Outcomes	(Münster)	
DRST-10	Efficacy of an allogeneic transplant and	J. Mytilineos	Manuskript in Arbeit
-2021	understanding the complex competing risks and	D. Fürst	Manuskiipt III Albeit
-2021	multistate structure of aftercare – Analysis of	J. Beyersmann	Publikation:
	German transplant registry data	(alle Ulm)	Schmeller S, Fürst D, Beyersmann J.
	derman transplant registry data	(une onn)	Konkurrierende Risiken Modelle.
			In: Gertheiss J, Schmid M, Spindler
			M. (eds) Moderne Verfahren der
			Angewandten Statistik 2023
			Verlag Springer Spektrum, Berlin,
			Heidelberg.
			doi:
			10.1007/978-3-662-63496-7_4-1
DRST-02	Evaluation des Spendertyps für ältere Patienten	J. Schetelig	Manuskript in Arbeit
-2022	mit AML, MDS, MDS/MPN oder CMML:	(Dresden)	
	Passender HLA-identer Geschwisterspender oder	K. Fleischhauer	
D. C. C.	junger unverwandter Spender?	(Essen)	
DRST-04	Real Word Data Brexucabtagene autoleucel	P. Dreger	Manuskript in Arbeit
-2022	Germany	(Heidelberg)	siehe Kapitel 4.3.3
		G. Heß	
DDCT 04	Figure des CMMI : "	(Mainz)	Datasasasas
DRST-04	Einordnung des "CMML transplant scores" – ROC-Kurve zur Analyse der Diskriminierung des	J. Weller	Datensammlung
-2023	ROC-Kurve zur Analyse der Diskriminierung des Risikoscores	W. Bethge (beide Tübingen)	siehe Kapitel 4.3.6
DRST-05	Vergleich Haplo-Tx Protokolle mit 9/10 identer	D. Fürst	Manuskript in Arbeit
-2023	unverwandter Blutstammzelltransplantation	E. Sala	wanuskript iii Arbeit
-2025	unverwandter Didistannizentransplantation	(beide Ulm)	
DRST-06	Analysis of German Multiple Sclerosis aHSCT	C. Heesen	Datensammlung
-2023	Cohort Data	N. Kröger	- Catenoum mulig
	- COC. Data	(beide Hamburg)	
DRST-07	Impact of maintenance therapy after allogeneic	R. Massoud	Manuskript in Arbeit
-2023	SCT for FLT3-ITD positive AML. Real world	N. Kröger	siehe Kapitel 4.3.9
	Data from German Registry for Stem Cell	(beide Hamburg)	
	Transplantation	A. Burchert	
	,	(Marburg)	
		C. Schmid	
		(Augsburg)	
DRST-08	Upfront HCT versus remission induction in	J. Schröder	Daten in Auswertung
-2023	patients with MDS and hypoproliferative AML	W. Bethge	
		(beide Tübingen)	
	ı		I

Nr.	Studientitel	Antragsteller	Status
DRST-09	Real World Data CAR-T cell therapy LBCL:	W. Bethge	Daten in Auswertung
-2023	Long-term FU + Liso-cel	(Tübingen)	
		P. Dreger	
		(Heidelberg)	
		F. Ayuk	
		(Hamburg)	
DRST-02	Klinischer Outcome nach Transfusion von	C. Schmid	Datensammlung
-2024	Spenderlymphozyten (DLI) bei Patienten mit	G. V. Filippini	
	Hochrisiko akuter myeloischen Leukämie (AML)	(beide Augsburg)	
	und myelodysplastischen Syndrom (MDS) in		
	kompletter hematologischen Remission (CHR)		
	nach allogener Stammzelltransplantation		
	(AlloSCT) - Einfluss von genetischen Subtypen,		
	Transplantations- und DLI-assozierten Parameter.		
DRST-03	Der Einfluss von HLA-Differenzen mit Fokus auf	D. Fürst	Daten in Auswertung
-2024	HLA-DQB1 Differenzen auf den Erfolg der	H. Schrezenmeier	siehe Kapitel 4.3.10
	unverwandten Blutstammzelltransplantation.	J. Beyersmann	
	Auswertung der DRST Daten von	E. Sala	
	Transplantationen aus den Jahren 2010-2021	(alle Ulm)	
DDCT 04	zusammen mit HLA-Daten der Sucheinheit Ulm	6.61.1	D
DRST-04 -2024	Reduzierte posttransplant Cyclophosphamid-Dosis	C. Schmid K. Hirschbühl	Datensammlung
-2024	(ptCy) zur Prophylaxe der Graft-versus-Host		siehe Kapitel 4.3.5
	Disease (GvHD) nach allogener Stammzelltransplantation (alloSZT) von	(beide Augsburg)	
	Familienspendern (haplo-identical oder matched)		
	oder unverwandten Spendern (mismatched oder		
	matched)		
DRST-05	Auswertung der DP-TCE Studie zum Einfluss von	K. Fleischhauer	Datensammlung
-2024	HLA-DPB1 Spender-Empfänger Differenzen auf	(Essen)	siehe Kapitel 4.3.8
-2024	das Outcome der 10/10	M. Stelljes	Siene Napitei 4.5.0
	Fremdspendertransplantation für maligne	(Münster)	
	hämatologische Erkrankungen	P. Dreger	
	namatologische Entramangen	(Heidelberg)	
DRST-02	Evaluation and updating the EBMT risk score for	D. Fürst	Datensammlung
-2025	a German cohort.	J. Beyersmann	
		(beide Ulm)	
DRST-05	Marginal Matched Pairs Cox Regression	J. Beyersmann	Daten in Auswertung
-2025	(Methodische Arbeit zu "Vergleich Haplo-Tx	D. Fürst	
	Protokolle mit 10/10 identer unverwandter	(beide Ulm)	
	Blutstammzelltransplantation (Matched Pair	(
	Registerdatenanalyse)" DRST-03-2022)		

In den folgenden Abschnitten finden Sie eine kurze Zusammenfassung zum aktuellen Stand einiger Projekte.

4.3.1 Tyrosinkinaseinhibition im Rezidiv nach allogener Blutstammzelltransplantation bei Ph+ CML-Ergebnisse einer multizentrischen, retrospektiven Analyse.

Verantwortlich: M. Meichsner¹, M. Bornhäuser¹

Einführung:

Die Behandlung der BCR-ABL positiven chronischen myeloischen Leukämie (CML) konnte durch die Einführung von Tyrosinkinaseinhibitoren (TKI) revolutioniert werden. Die allogene Stammzelltransplantation (ASZT) wird heutzutage als kurative Therapieoption aufgrund des hohen Risikos für Komplikationen wie Graft-versus-Host-Disease (GvHD) und therapieassoziierter Mortalität nur bei Hochrisikopatienten oder therapieresistenten Fällen eingesetzt.

Nach einer ASZT kann es zu einem molekularen oder zytogenetischen Rezidiv kommen, was eine erneute Behandlung erfordert. In solchen Fällen werden TKIs zur Krankheitskontrolle eingesetzt. Allerdings ist die Therapie in dieser Patientengruppe herausfordernd, da die Verträglichkeit und Wirksamkeit von TKIs nach einer Transplantation durch immunologische Veränderungen und Organfunktionsstörungen beeinflusst werden können. Die vorliegende Studie untersucht daher den Einsatz von TKIs nach ASZT, mit besonderem Fokus auf Nebenwirkungen und Therapieanpassungen.

Methode:

Diese retrospektive Analyse basiert auf Daten aus dem Deutschen Register für hämatopoetische Stammzelltransplantation und Zelltherapie (DRST) sowie ergänzenden Fragebögen, die an Transplantationszentren verschickt wurden. In die Studie wurden 105 Patienten eingeschlossen, die zwischen 2000 und 2012 eine ASZT erhielten und im Verlauf ein Rezidiv entwickelten, das mit TKIs behandelt wurde. Erhoben wurden patientenspezifische Faktoren (z. B. Alter, Geschlecht, Krankheitsphase zum Zeitpunkt der ASZT), therapiebezogene Daten (eingesetzte TKIs, Dosierungen, Nebenwirkungen) sowie klinische Konsequenzen (Dosisanpassungen, Therapieabbrüche oder -wechsel).

Ergebnisse:

Die am häufigsten eingesetzten TKIs waren Imatinib (64 %), Nilotinib (29 %), Dasatinib (32 %), Bosutinib (4 %) und Ponatinib (13 %). Bei 30 % der Patienten war eine Umstellung der Therapie erforderlich, da Nebenwirkungen oder unzureichendes Ansprechen auftraten. Häufige Nebenwirkungen waren:

- Gastrointestinale Beschwerden (z. B. Übelkeit, Durchfall; v. a. bei Bosutinib)
- Hämatologische Toxizitäten (z. B. Anämie, Neutropenie; v. a. unter Dasatinib)
- Kardiovaskuläre Ereignisse (z. B. arterielle Verschlüsse, Hypertonie; v. a. unter Nilotinib und Ponatinib)
- Pleuraergüsse (v. a. unter Dasatinib)
- Ödeme und Hautreaktionen (v. a. unter Imatinib)

Ältere Patienten und solche mit vorbestehenden Komorbiditäten zeigten ein erhöhtes Risiko für schwere Nebenwirkungen. In einigen Fällen führte die Nebenwirkungsbelastung zum Absetzen des TKIs oder zum Wechsel auf eine alternative Therapieoption.

¹ Med. Klinik I, Universitätsklinikum der TU Dresden

Diskussion:

Die Ergebnisse unterstreichen, dass TKIs eine essenzielle Therapieoption für Patienten mit CML-Rezidiven nach ASZT darstellen, jedoch mit einer hohen Nebenwirkungsrate einhergehen. Die Wahl des geeigneten TKIs sollte daher individuell unter Berücksichtigung von Vorerkrankungen, Nebenwirkungsprofilen und Krankheitsverlauf getroffen werden. Insbesondere bei kardiovaskulären Risikofaktoren könnte eine engmaschige Überwachung erforderlich sein, um potenziell lebensbedrohliche Ereignisse zu verhindern.

Zudem zeigt die Studie, dass Patienten, die bereits eine ASZT durchlaufen haben, möglicherweise empfindlicher auf TKI-Nebenwirkungen reagieren als Patienten ohne Transplantationshistorie. Mögliche Erklärungen hierfür sind eine durch die ASZT veränderte Immunantwort sowie Organschäden durch die vorherige Konditionierungstherapie.

Zusammenfassung:

Die Studie zeigt, dass TKIs eine effektive, aber nebenwirkungsreiche Option zur Behandlung von CML-Rezidiven nach ASZT sind. Eine individualisierte Therapieplanung ist essenziell, um Nebenwirkungen zu minimieren und das Therapieansprechen zu optimieren. Zukünftige Forschung sollte sich auf Strategien zur besseren Verträglichkeit von TKIs nach ASZT sowie auf alternative Therapieansätze konzentrieren.

4.3.2 Retrospective analysis of allogeneic hematopoietic stem cell transplantation (HSCT) in the treatment of relapse of myeloid neoplasia after a first allogeneic HSCT

Verantwortlich: PD Dr. Maximilian Christopeit¹, Dr. Jan Weller¹, Prof. Christoph Schmid².

- ¹ Universitätsklinikum Hamburg-Eppendorf
- ² Universitätsklinikum Augsburg

Erste Ergebnisse unserer Analyse wurden bereits im vergangenen Jahr im Rahmen einer Sitzung zur allogenen Transplantation auf der Jahrestagung der DGHO vorgestellt. Dabei konnten wir bekannte Risikokonstellationen bestätigen, insbesondere das ungünstige Überleben von Patienten mit frühem Rezidiv innerhalb von 6 Monaten nach Ersttransplantation, die sich einer Zweittransplantation unterzogen (EFS = 6 Monate: HR 0,71 [0,58; 0,86], p < 0,001; Ref.: < 6 Monate). Zusätzlich haben wir einzelne Entitäten differenzierter analysiert. Hier zeigte sich insbesondere bei Patienten mit myelodysplastischem Syndrom (MDS) ein signifikant verbessertes Überleben nach Zweittransplantation im Vergleich zur akuten myeloischen Leukämie (AML) (HR 0,56 [0,39; 0,81], p = 0,002; Ref.: AML). Ein hoher Karnofsky-Performance-Status erwies sich in der multivariablen Analyse als protektiver Faktor für das Gesamtüberleben (Karnofsky 90-100: HR 0,58 [0,45; 0,76], p < 0,001; Ref.: < 80).

4.3.3 Brexu-cel bei resistentem Mantelzelllymphom im deutschen und Schweizer Versorgungsalltag: Eine GLA/EMCL/DRST/SAKK-Analyse

Verantwortlich: G. Heß¹, P. Dreger²

Bei diesem Projekt handelt es sich um die erste Real-World-Analyse zur Anwendung der CD19-CART-Therapie Brexucabtagen Autoleucel (Brexu-cel) in der Routineversorgung des refraktären bzw. rezidivierten Mantelzelllymphoms (r/r MCL) in Deutschland. Hierzu wurden Registerdaten aus dem DRST und dem Europäischen MCL-Register (EMCL) aus dem Zeitraum von Q2/2020 bis Q3/2023 zusammengeführt.

113 Patienten bzw. Patientinnen (Pat., medianes Alter 67 Jahre, 81 % männlich) aus 18 deutschen und einem Schweizer Zentrum konnten eingeschlossen werden. Im Mittel waren 3 (1-8) Vortherapien erfolgt, 56 % der Pat. hatten außerdem eine autologe und 9 % eine allogene Stammzelltransplantation erhalten. Alle Pat. waren mit einem Bruton-Tyrosinkinasehemmer (BTKi) vorbehandelt, dessen Gabe bei 59 % aufgrund von Krankheitsprogression beendet worden war. Bei 65 % der Pat. betrug die Ansprechdauer auf die letzte verabreichte Therapielinie vor Indikationsstellung zur CAR-T-Zell-Therapie weniger als ein Jahr (POD12). 89 % der Pat. erhielten eine Überbrückungstherapie (Bridging) zwischen Indikationsstellung und Infusion von Brexu-cel, auf die 64 % der Pat. mit dazu verfügbarer Information zum Zeitpunkt der Brexu-celgabe angesprochen hatten. Insgesamt befanden sich 11 % aller Pat. zum Zeitpunkt der Lymphodepletion in CR, 31 % in PR, 25 % waren Bridging-refraktär, 12 % hatten eine aktive Erkrankung bei Verzicht auf Bridging, und bei 21 % war der Remissionsstatus unbekannt.

Als bestes Ansprechen nach CAR-T-Zell-Therapie wurde eine CR bei 63 % und eine PR bei 25 % der Pat. registriert (Gesamtansprechrate 88 %). Das mediane ereignisfreie Überleben betrug 25 Monate, und das mediane Gesamtüberleben 27 Monate. Die Rate an höhergradigen Ausprägungen von CRS, Neurotoxizität und Infektionen entsprachen den in der Zulassungsstudie und Real-World-Analysen in anderen Versorgungssystemen beobachteten Raten. Die kumulative Inzidenz der nicht-rezidivbedingten Mortalität (NRM) betrug 10 % nach 12 Monaten. Als für das Überleben ungünstige Faktoren konnten POD12 und Nichtansprechen auf Bridging identifiziert werden. Das Überleben nach Krankheitsfortschreiten nach Brexucel war mit im Median 5 Monaten leider nur kurz.

Diese im deutsch-schweizerischen Versorgungskontext erhobenen Daten entsprechen den Ergebnissen aus anderen westlichen Gesundheitssystemen. Während die Wirksamkeit von Brexu-cel in der untersuchten Krankheitssituation bisher mit keiner anderen Therapiemodalität beobachtet wurde und gerade für ältere Pat. vielversprechend erscheint, bleibt die NRM eine Herausforderung.

Die Ergebnisse der Studie wurden auf der Jahrestagung der DGHO im Oktober 2024 in Basel vorgestellt und sind zur Publikation eingereicht.

¹ Universitätsklinikum Mainz

² Universitätsklinikum Heidelberg

4.3.4 Evaluierung der Stammzelltransplantationen als einzig potenziell kurative Therapielinie in der T-Prolymphozytenleukämie

Verantwortlich: Linus Wahnschaffe¹, Prof. Dr. Marco Herling², Prof. Dr. Peter Dreger³

- ¹ Universitätsklinikum Köln
- ² Universitätsklinikum Leipzig
- ³ Universitätsklinikum Heidelberg

Bei der T-Prolymphozytenleukämie (T-PLL) handelt es sich um eine sehr seltene (Inzidenz < 2/1 Mio/Jahr) maligne Entartung von reifen T-Lymphozyten. Klinisch zeichnet sich die T-PLL durch ihren häufig aggressiven Krankheitsverlauf aus. Die einzig potenziell kurative Option stellt die allogene Stammzelltransplantation (HSCT), insbesondere in erster Remission, dar. Bisherige Versuche prognostische Einflussfaktoren auf das Ergebnis einer HSCT in T-PLL-Patienten zu identifizieren waren größtenteils durch eine begrenzte Anzahl verfügbarer Patienten sowie klinischer und biologischer Parameter in ihrer Aussagekraft limitiert.

Dieses kooperative Projekt verfolgt das Ziel potenzielle klinische sowie molekulare prognostische Marker für die Effektivität der HSCT in der T-PLL zu identifizieren. Hierfür erfolgt eine Integration und gemeinsame Auswertung der Datensätze des DRST sowie der prospektiven T-PLL-Registerstudie der Deutschen CLL-Studiengruppe (DCLLSG) zusammen mit den in der Arbeitsgruppe um Prof. Dr. med. M. Herling generierten klinischen, biologischen und molekulargenetischen Datensätzen. Diese Integration ermöglicht die Analyse einer einmalig großen und sehr gut annotierten T-PLL-Kohorte.

Die Gesamtkohorte dieser drei Datensätze umfasst ein Kollektiv von insgesamt 246 T-PLL-Patienten, von denen 94 Patienten (38,2%) eine allogene Stammzelltransplantation erhalten haben (mittlere Nachbeobachtungsdauer: 39,0 Monate). Insgesamt ergab sich eine Überschneidung von 21 (29,2%) der im DRST-Datensatz erfassten Patienten mit dem Kollektiv der DCLLSG Registerstudie und den Patienten unseres internen (nationale Zweitmeinungssprechstunde) T-PLL-Datensatzes.

Bislang bestätigt sich in dieser Gesamtkohorte die Effektivität der allogenen HSCT für einen Teil der T-PLL-Patienten. Das Gesamtüberleben (OS) ab Zeitpunkt der Diagnose zeigte sich im Vergleich zu den nichttransplantierten T-PLL-Patienten unserer Kohorte signifikant verbessert (medianes Überleben: 26,6 vs. 18,7 Monate, p = 0,0006). Gleichzeitig ließ sich jedoch eine hohe Progressionsrate (kum. Ein-Jahresinzidenz: 19,3 %, kum. Dreijahresinzidenz: 33,8 %) sowie eine ausgeprägte transplantationsassoziierte Mortalität (TRM, kum. Ein-Jahresinzidenz: 24,6%, kum. Dreijahresinzidenz: 40,2%) beobachten. Langfristige Remissionen konnten in etwa einem Viertel der T-PLL-Patienten erreicht werden (5-Jahre erkrankungsfreies Überleben (DFS): 23,1%). Ergebnisse einer retrospektiven Analyse der CIBMTR-Datenbank, die einen Nachteil von myeloablativen Konditionierungsregimen hinsichtlich des DFS und der TRM ergaben, konnten in unserer Kohorte nicht bestätigt werden. Ebenso ließ sich in unserem Patientenkollektiv kein signifikanter Einfluss des Patientenalters oder des biologischen Geschlechtes auf OS oder DFS feststellen. Eine Seropositivät der Empfänger gegenüber CMV zum Zeitpunkt der allogenen Stammzelltransplantation zeigte eine schwache Assoziation mit einer erhöhten nicht rezidivbedingten Mortalität (NRM, kum. Ein-Jahresinzidenz: 34,7% vs. 12,5%, p=0,096). Wie bereits in vorherigen Studien beschrieben war die Durchführung einer Ganzkörperbestrahlung bei myeloablativer Konditionierung auch in unserer Kohorte eher mit einem vorteilhaftem erkrankungsfreien Überleben assoziiert. Zur Zeit erfolgen weitere Analysen unter Berücksichtigung der uns vorliegenden genomischen Datensätze. Die angestrebte Zusammenfassung und Einreichung zur Publikation ist für Q1 2026 vorgesehen.

4.3.5 Reduzierte posttransplant Cyclophosphamid-Dosis (ptCy) zur Prophylaxe der Graft-versus-Host Disease (GvHD) nach allogener Stammzelltransplantation (alloSZT) von Familienspendern (haplo-identical oder matched) oder unverwandten Spendern (mismatched oder matched).

Verantwortlich: K. Hirschbühl¹, Ch. Schmid¹

Seit der Einführung des ptCy in die haplo-identische allogene Stammzelltransplantation (alloSZT) mit der Erstpublikation im Jahr 2008 hat dieses Protokoll weltweit große Verbreitung gefunden und ist zu einem etablierten Standard in der haplo-identen alloSZT geworden. Hierbei wird hochdosiertes Cyclophosphamid (50 mg/kg KG) an den Tagen +3 und +4 nach alloSZT zur GvHD-Prophylaxe verabreicht. Die Rationale für dieses Therapieschema basiert auf dem selektiven zytoreduktiven Effekt von Cyclophosphamid auf die hyperproliferativen T-Zellen beinhaltet im Transplantat, während die Stammzellen an sich vom zytotoxischen Effekt des ptCy aufgrund der noch nicht eingesetzten Proliferation nicht getroffen werden.

Im weiteren Verlauf wurde ptCy vom Setting der haplo-identischen alloSZT auch auf andere Spendersituationen wie komplett passenden Geschwister- oder Fremdspender (MSD, MUD) oder aber auch nicht komplett HLA-idente Fremdspender (MMUD) angewendet, hier jeweils ebenfalls mit der Standarddosis 2 \times 50 mg/kg KG. In einer multizentrischen Phase III-Studie in den USA war die Kombination von ptCy in Standarddosierung (2 \times 50 mg/kg), Tacrolimus und MMF der Gabe von Tacrolimus und MTX signifikant überlegen hinsichtlich des kombinierten Endpunktes GvHD- und Rezidiv-freies Überleben. In Deutschland wird momentan der europäische Standard Antithymozytenglobulin (ATG) gegen ptCy 2 \times 50 mg/kg KG in einer randomisierten Phase III-Studie (GRAPPA Studie) bei Fremdspendertransplantation verglichen.

Neben dem sehr guten Effekt zur Prophylaxe der GvHD zeigten sich mittlerweile jedoch auch einige Toxizitäten wie verzögertes Engraftment, verzögerte Immunrekonstitution, erhöhte Infektionsraten und eine
relevante Kardiotoxizität unter der Standarddosis ptCy von 2 x 50 mg/kg KG. Daher lag und liegt es nahe,
mit einer Reduktion des ptCy zu versuchen, diese Toxizitäten zu verringern — bei mutmaßlich gleichem
Effekt hinsichtlich der GvHD-Prophylaxe. Auch hier gibt es bereits mehrere, überwiegend kleinere und
retrospektive Studien, welche über unterschiedliche Dosierungen von ptCy berichten. Diese legen nahe,
dass zumindest keine relevante Reduktion der Effektivität hinsichtlich der GvHD-Prophylaxe besteht. Für
Deutschland existieren solche Daten bislang nicht.

Daher ist das Ziel die Etablierung einer aggregierten Datenbasis bezüglich der Anwendung und des Outcomes einer reduzierter ptCy-Dosis nach alloSZT in Deutschland. Geplant ist eine deskriptive Analyse hinsichtlich Zytokin-Release-Syndrom, Toxizität, Engraftment, GvHD, und Infektionen sowie die Analyse von OS, LFS, RI, NRM und der Vergleich mit einer (evtl. gematchten) Kontrollgruppe mit Standad-Dosierung ptCy aus dem Register. Anhand der Einschlusskriterien (1) reduzierte ptCy-Dosis von < 2 x 50 mg/kg KG im Rahmen der Konditionierung vor allogener Stammzelltransplantation, (2) sämtliche Krankheitsentitäten, (3) Patient*innen >= 18 Jahre, (4) Familienspender (haplo-identisch oder gematched) oder unverwandten Spendern (mismatched oder gematched), (5) Knochenmark oder periphere Blutstammzellen, (6) erste oder zweite allogene SZT, (7) Transplantationsjahr 2014-2023 konnten aus dem Register 111 Patient*innen identifiziert werden.

¹ Universitätsklinikum Augsburg

Aktuell erfolgt die Erstellung eines spezifischen Fragebogens, welcher noch im Juli 2025 an die Zentren verschickt wird, zur Abfrage der notwendigen Parameter, welche nicht standardmäßig im Register verfügbar sind. Sobald hierdurch die Daten komplettiert sind, kann die Analyse beginnen. Ein positives Ethikvotum der LMU München liegt bereits vor (Nr.24-1100).

4.3.6 Einordnung des "CMML transplant scores" – ROC-Kurve zur Analyse der Diskriminierung des Risikoscores

Verantwortlich: Dr. Jan Weller¹, Prof. Wolfgang Bethge¹

Der CMML Transplant Score, entwickelt von Dr. Nico Gagelmann et al., stellt eine etablierte Methode zur Risikostratifizierung von Patienten mit chronischer myelomonozytärer Leukämie (CMML) im Kontext der allogenen Stammzelltransplantation dar. In unserem Manuskript haben wir die Thematik umfassend kontextualisiert und befinden uns nun in der weiterführenden Analyse. Der Fokus unserer Untersuchung liegt auf der prognostischen Aussagekraft des Scores in den einzelnen Jahren nach der Transplantation. Zu diesem Zweck haben wir zeitabhängige ROC-Kurven erstellt, um die Diskriminationsfähigkeit des Scores für verschiedene Zeitpunkte nach der Transplantation systematisch zu evaluieren.

4.3.7 Real-World-Analyse der CAR-T-Zelltherapie bei rezidiviertem oder refraktärem multiplem Myelom in Deutschland

Verantwortlich: M. Merz¹, N. Gagelmann², N. Kröger²

- ¹ Universitätsklinikum Leipzig
- ² Universitätsklinikum Hamburg-Eppendorf

Die CAR-T-Zell-Therapie stellt einen bedeutenden Fortschritt in der Behandlung des rezidivierten oder refraktären multiplen Myeloms (RRMM) dar, insbesondere für Patienten, die auf herkömmliche Therapien nicht mehr ansprechen. Diese Studie analysiert die Real-World-Effizienz und Sicherheit von Idecabtagene Vicleucel (ide-cel) und Ciltacabtagene Autoleucel (cilta-cel) in Deutschland. Klinische Studien zeigen vielversprechende Ergebnisse für beide Therapieformen, doch ihr Nutzen in einer heterogenen Patientenpopulation ist weniger erforscht.

Daten wurden aus dem Deutschen Register für hämatopoetische Stammzelltransplantation und Zelltherapie (DRST) erhoben und umfassen 343 Patienten mit RRMM, die zwischen August 2021 und Dezember 2023 mit CAR-T-Zellen behandelt wurden (ide-cel: n=266; cilta-cel: n=77). Die Analyse umfasste demografische Daten, klinische Parameter, Krankheitsstatus vor der Therapie und Nebenwirkungen.

Cilta-cel zeigt bessere Wirksamkeit

Cilta-cel erreichte eine Gesamtansprechrate (ORR) von 94 % gegenüber 82 % bei ide-cel. Auch die Raten der kompletten Remission (CR) waren mit 61 % für cilta-cel im Vergleich zu 39 % für ide-cel höher. Die progressionsfreie Überlebensrate (PFS) nach 10 Monaten betrug 76 % für cilta-cel und 47 % für ide-cel.

Sicherheitsprofil und Nebenwirkungen

Das Sicherheitsprofil beider CAR-T-Zell-Therapien war ähnlich, jedoch trat das Zytokinfreisetzungssyn-

¹ Universitätsklinikum Tübingen

drom (CRS) bei cilta-cel (85 %) etwas häufiger auf als bei ide-cel (81 %). Schwere neurotoxische Ereignisse (ICANS) waren mit 25 % für cilta-cel höher als für ide-cel (15 %). Die Nicht-Rückfall-Mortalität (NRM) nach 10 Monaten lag bei 7 % für cilta-cel und 5 % für ide-cel.

Einfluss der Krankheitslast vor CAR-T-Zell-Therapie

Patienten mit einer CR vor der Therapie wiesen das beste progressionsfreie Überleben auf. Besonders vorteilhaft erwies sich cilta-cel für Patienten mit suboptimalem Ansprechen vor der Therapie, da es häufiger eine Konversion zu einer tiefen Remission ermöglichte.

Multivariable Analyse

Cilta-cel zeigte in der Cox-Regression eine signifikante Reduktion des Progressionsrisikos (HR 0,28). Zudem hatten Männer ein erhöhtes Risiko für eine Krankheitsprogression im Vergleich zu Frauen (HR 1,55). Alter, Lymphodepletionsstrategie und Body-Mass-Index hatten keinen signifikanten Einfluss auf das Outcome.

Diese Real-World-Analyse bestätigt die Ergebnisse aus klinischen Studien und zeigt, dass cilta-cel gegenüber ide-cel eine bessere Ansprechrate, höhere CR-Raten und ein verlängertes progressionsfreies Überleben bietet. Gleichzeitig treten bei cilta-cel häufiger schwere Nebenwirkungen, insbesondere ICANS, auf, was eine engmaschige Überwachung erfordert.

Ein weiterer wichtiger Aspekt ist die Bedeutung des Krankheitsstatus vor der CAR-T-Zell-Therapie. Patienten, die bereits vor der Therapie eine CR erreichten, hatten unabhängig vom verwendeten Produkt die beste Prognose. Dies unterstreicht die Relevanz einer effektiven Bridging-Therapie zur Reduktion der Tumorlast vor CAR-T-Zellinfusion.

Insgesamt liefert diese Studie wertvolle Erkenntnisse zur individualisierten Therapieentscheidung und Optimierung der Behandlungsergebnisse bei RRMM-Patienten in der klinischen Praxis.

4.3.8 Auswertung der DP-TCE Studie zum Einfluss von HLA-DPB1 Spender-Empfänger Differenzen auf das Outcome der 10/10 Fremdspendertransplantation für maligne hämatologische Erkrankungen

Verantwortlich: Katharina Fleischhauer¹, Matthias Stelljes², Peter Dreger³

- ¹ Universitätsklinikum Essen
- ¹ Universitätsklinikum Münster
- ² Universitätsklinikum Heidelberg

In dieser Studie werden die Daten aus der prospektiven, nicht interventionellen DP-TCE-Studie zur Auswahl von unverwandten Stammzellspendern unter Berücksichtigung von HLA-DP ausgewertet. Diese Studie wurde zwischen 2015 und 2022 unter Beteiligung von insgesamt 6 deutschen Transplantationszentren durchgeführt und führte zum Einschluss von 1012 Patienten, davon über 80 % aus den drei Zentren der Antragsteller. Zum jetzigen Stand (14.03.2025) findet die Abfrage der klinischen Daten über das DRST statt, parallel dazu werden die HLA-DPB1-Typisierungen der eingeschlossenen Paare nach verschiedenen Algorithmen stratifiziert. Der primäre Endpunkt ist die Assoziation zwischen HLA-DP-Status und Gesamt-überleben sowie Rezidiv-freiem Überleben. Sekundäre Endpunkte sind Rezidiv und Tod in Remission, akute und chronische GvHD, GRFS und nicht-rezidivbedingte Mortalität. Außerdem soll die Studie Aufschluss geben über die relative Wertigkeit von HLA-DPB1-Status und Spenderalter. Die statistischen Auswertungen sollen von der DRST-Statistikerin durchgeführt werden.

4.3.9 Auswirkung einer FLT3-Inhibitor-Erhaltungstherapie auf das posttransplantationale Outcome bei FLT3-mutierter AML: Eine Real-World-Analyse des Deutschen Registers für Hämatopoetische Stammzelltransplantation und Zelltherapie (DRST)

Verantwortlich: Radwan Massoud¹, Sarah Flossdorf^{2, 3}, Franziska Hanke², Thomas Schroeder⁴, Wolfgang Bethge⁴, Robert Zeiser⁶, Caroline Pabst⁷, Gerald Wulf⁸, Elisa Sala⁹, Inken Hilgendorf¹⁰, Christoph Scheid¹¹, Matthias Edinger¹², Friedrich Stölzel¹³, Igor Wolfgang Blau¹⁴, Matthias Stelljes¹⁵, Guido Kobbe¹⁶, Uwe Platzbecker¹⁷, Jörg Thomas Bittenbring¹⁸, Matthias Eder¹⁹, Katharina Fleischhauer^{2, 20}, Andreas Burchert^{*21}, Christoph Schmid^{*22}, Nicolaus Kröger^{*1, 2}

- * Equal Contribution
- ¹ Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- ² German Registry for Hematopoietic Stem Cell Transplantation and Cell Therapy, DRST, Ulm, Germany.
- ³ Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Essen, Germany.
- ⁴ Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, Essen, Germany.
- ⁵ Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany.
- ⁶ Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- ⁷ Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
- ⁸ Hematology and Medical Oncology, University Medicine Göttingen, Göttingen, Germany.
- ⁹ Department of Internal Medicine, Hematology and Oncology, University Hospital Ulm, Germany.
- ¹⁰ Department of Internal Medicine, Hematology and Oncology, University Hospital Jena, Germany.
- ¹¹ Department of Internal Medicine, Hematology and Oncology, University Hospital Cologne, Germany
- ¹² Department of Internal Medicine, Hematology and Oncology, University Hospital Regensburg, Germany
- ¹³ Department of Internal Medicine, Hematology and Oncology, University Hospital Schleswig Holstein (UKSH) Kiel, Germany
- ¹⁴ Medical Clinic, Charité University Medicine Berlin, Berlin, Germany.
- ¹⁵ Department of Medicine A, University Hospital of Münster, Münster, Germany.
- ¹⁶ Department of Hematology, Oncology and Stem cell Transplantation, University Hospital Leipzig, Germany
- ¹⁷ Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany.
- ¹⁸ Department of Internal Medicine, Hematology and Oncology, University Hospital Homburg, Germany.
- ¹⁹ Hannover Medical School, Hannover, Germany.
- ²⁰ Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany.
- ²¹ Department of Hematology, Oncology and Immunology University Hospital Marburg, Germany.
- ²² Klinikum Augsburg, II Medizinische Klinik, Augsburg, Germany.

Bei etwa 30 % der AML-PatientInnen liegt eine FLT3-Mutation vor, die mit einer ungünstigen Prognose einhergeht, insbesondere durch frühe Rezidive, was auch nach einer allogenen Stammzelltransplantation (allo-SCT) zu einem schlechteren Behandlungsergebnis führt. Klinische Studien zur posttransplantativen

FLT3-Inhibitor-Therapie haben die Machbarkeit, Sicherheit und vielversprechende Resultate gezeigt. Diese vom DRST durchgeführte Studie untersucht in einer großen Kohorte FLT3-mutierter AML-PatientInnen die Wirkung einer FLT3-Inhibitor-Erhaltungstherapie nach allo-HCT.

In den Jahren 2011-2023 wurden 923 PatientInnen (52% männlich, 48% weiblich) mit FLT3-mutierter AML, die eine allo-SCT von HLA-kompatiblen Spendern erhielten, im DRST erfasst. Das mediane Transplantationsalter lag bei 54 Jahren (Spanne 18-77), 70% hatten einen Karnofsky-Index >80 %. Die mediane Zeit von Diagnosestellung bis zur Transplantation betrug 120 Tage (Spanne 37-789). Bei 95 % wurde ein PBSC-Graft verwendet, 51% erhielten eine myeloablative Konditionierung. Alle PatientInnen befanden sich zum Zeitpunkt der Transplantation in CR1; 21% waren MRD-positiv, 24% MRD-negativ und 55% hatten einen unbekannten MRD-Status. Bei 13% (n=123) wurde überwiegend off-label eine FLT3-Inhibitor-Erhaltungstherapie nach allo-SCT eingesetzt (57% Sorafenib, 43% Midostaurin, 6% Gilteritinib, 9% unbekannt), 44% (n=407) erhielten keine Erhaltungstherapie und bei 43% (n=400) war keine entsprechende Information verfügbar.

Nach 5 Jahren betrug das rezidivfreie Überleben (RFS) für die gesamte Kohorte 60% (95%-KI [55; 64]) und das Gesamtüberleben (OS) 65% (95%-KI [61; 69]). PatientInnen mit Erhaltungstherapie zeigten im Vergleich zu jenen ohne Erhaltungstherapie ein signifikant längeres RFS (HR 1,8; 95%-KI [1,1; 2,9]; p=0,0082; 5-Jahres-RFS 74%; 95%-KI [65; 85] vs. 55%; 95%-KI [48; 62]) sowie OS (HR 2,35; 95%-KI [1,34; 4,01]; p=0,0006; 5-Jahres-OS 75%; 95%-KI [63; 91] vs. 61%; 95%-KI [56; 68]).

Das graft-versus-host disease relapse-free survival (GRFS) war unter Erhaltungstherapie ebenfalls signifikant besser (HR 1,43; 95 %-KI [0,996; 2,06]; p=0,045; 5-Jahres-GRFS 46 %; 95 %-KI [34; 63] vs. 39 %; 95 %-KI [33; 47]). Die nicht-rezidivbedingte Mortalität (NRM) war in der Erhaltungsgruppe signifikant niedriger (HR 4,4; 95 %-KI [1,36; 14,2]; p=0,013) mit einer 5-Jahres-NRM von 4 % (95 %-KI [0; 7]) vs. 17 % (95 %-KI [12; 22]). Hierbei ist jedoch eine mögliche Selektion (z. B. bessere Fitness der PatientInnen) zu berücksichtigen. Die genauen Gründe für die Entscheidung zur Erhaltungstherapie blieben unklar. Die kumulative Rezidivinzidenz (CIR) nach 5 Jahren war in beiden Gruppen vergleichbar (22 %; 95 %-KI [13; 31] vs. 29 %; 95 %-KI [22; 35]; HR 1,5; 95 %-KI [1,0; 2,2]; p=0,078).

In Subgruppenanalysen zeigten sowohl MRD-positive als auch MRD-negative PatientInnen Verbesserungen von OS und RFS durch die Erhaltungstherapie. Bei MRD-positiven PatientInnen lag das 5-Jahres-OS mit Erhaltung bei 76 % (95 %-KI [61; 94]) vs. 58 % (95 %-KI [46; 73]) ohne Erhaltung (HR 2,32; 95 %-KI [1,03; 5,24]; p=0,0276) und das 5-Jahres-RFS bei 71 % (95 %-KI [57; 88]) vs. 54 % (95 %-KI [42; 70]). MRD-negative PatientInnen erreichten ein 5-Jahres-OS von 86 % (95 %-KI [75; 98]) mit Erhaltung vs. 62 % (95 %-KI [53; 73]) ohne (HR 2,67; 95 %-KI [1,06; 6,74]; p=0,0187) und ein 5-Jahres-RFS von 78 % (95 %-KI [65; 93]) vs. 53 % (95 %-KI [43; 65]) (HR 2,08; 95 %-KI [0,98; 4,39]; p=0,0374). Obgleich in der CIR keine signifikanten Unterschiede beobachtet wurden, zeigte die Erhaltungstherapie sowohl in der MRD+ als auch in der MRD- Subgruppe einen tendenziell positiven Effekt. Die NRM war in der MRD+ Gruppe vergleichbar; bei MRD- PatientInnen ließ sich unter Erhaltungstherapie hingegen ein Trend zu einer geringeren NRM erkennen (5-Jahres-NRM 3 %; 95 %-KI [0; 8] vs. 23 %; 95 %-KI [14; 32]; HR 7,25; 95 %-KI [0,95; 55,12]; p=0,056). Zwischen Midostaurin- und Sorafenib-Behandelten liegen keine statistisch signifikanten Unterschiede in OS, RFS, GRFS, NRM oder CIR vor.

Diese Real-World-Daten aus dem DRST als großes nationales Register zeigen, dass die Erhaltungstherapie mit FLT3-Inhibitoren das rezidivfreie und das Gesamtüberleben bei FLT3-mutierter AML nach allo-SCT signifikant verbessert — unabhängig vom MRD-Status.

4.3.10 Der Einfluss von HLA-Differenzen mit Fokus auf HLA-DQB1-Differenzen auf den Erfolg der unverwandten Blutstammzelltransplantation. Auswertung der DRST-Daten von Transplantationen aus den Jahren 2010-2021 zusammen mit HLA-Daten der Sucheinheit Ulm

Verantwortlich: Daniel Fürst^{1, 2}, Hubert Schrezenmeier^{1, 2}, Elisa Sala³, Jan Beyersmann⁴

DRK-Blutspendedienst Baden-Württemberg/Hessen und Universitätsklinikum Ulm

Die allogene Blutstammzelltransplantation stellt mittlerweile ein klinisches Routineverfahren für die Behandlung lebensbedrohlicher Erkrankungen des hämatopoetischen Systems dar. Wesentliche Voraussetzungen waren der Übergang der HLA-Typisierung von serologischen Verfahren zu molekulargenetischen Verfahren, die zunehmende Verfügbarkeit gut typisierter Blutstammzellspender weltweit sowie dosisreduzierte Konditionierungsverfahren und Verbesserungen in der Supportivtherapie auf klinischer Seite. So konnte die Sicherheit und Wirksamkeit der Behandlung über die Jahre verbessert werden, und insbesondere für ältere Patienten und für Patienten mit Komorbiditäten stiegen die Transplantationszahlen in den letzten 20 Jahren überproportional.

Gerade in der unverwandten Blutstammzelltransplantation, die in Deutschland aktuell rund 75 % aller allogenen Blutstammzelltransplantationen ausmacht, spielt die hochauflösende HLA-Typisierung eine herausragende Rolle. Große internationale Studien hatten gezeigt, dass HLA-Differenzen auf Allelebene die Mortalität und GvHD-Inzidenzen signifikant erhöhen. Dies gilt besonders für die klassischen Genorte HLA-A, -B, -C, und -DRB1. Hier gibt es einen internationalen Konsens, dass eine Übereinstimmung auf allelischer Ebene zwischen Patient und Spender in der unverwandten Blutstammzelltransplantation mit wenigen Ausnahmen (z. B. HLA-C*03:03/03:04) angestrebt werden sollte. Für HLA-DPB1 hat sich mittlerweile ein Matchingsystem basierend auf der Immunogenität der gemismatchten HLA-Merkmale durchgesetzt, das sogenannte T-Zell-Epitopmatching (TCE-3), das HLA-DPB1 Mismatche in permissiv und non-permissiv einteilt. Kein klarer Konsensus besteht international hinsichtlich der Bedeutung von HLA-DQB1-Differenzen, für die in großen Studien bislang eindeutiger Effekt nachgewiesen werden konnte. Eine Limitation ist jedoch, dass häufig nur geringe Zahlen an Fällen mit isolierten HLA-DQB1-Differenzen erreicht werden, da HLA-DRB1 und HLA-DQB1 stark gekoppelt sind. Hierdurch kann häufig keine ausreichende statistische Power erzielt werden kann.

Die unzureichenden Evidenzen führen in der klinischen Praxis dazu, dass international häufig nur HLA-A, -B, -C, -DRB1 primär gematcht wird. In Deutschland hingegen wurden die Daten bislang so interpretiert, dass ein Effekt von HLA-DQB1 nicht auszuschließen ist und im Zweifel daher auch (nachrangig) gematcht werden sollte. Für die klinische Spenderselektion wäre es daher sinnvoll, aussagekräftige Daten zur Bedeutung von HLA-DQB1-Differenzen zu erheben. Dazu sind allerdings sehr große Kohortenzahlen notwendig. Auch die Veränderung des Patientenspektrums hin zu älteren Patienten könnte den Effekt von HLA-Differenzen beeinflussen, da ältere Patienten die transplantationsassoziierte Morbidität schlechter tolerieren als jüngere Patienten.

¹ Institut für Klinische Transfusionsmedizin und Immungenetik Ulm,

² Institut für Transfusionsmedizin, Universität Ulm

³ Innere Medizin III, Universitätsklinikum Ulm

⁴ Institut für Statistik, Universität Ulm

Mit diesem Projekt streben wir eine Analyse der Bedeutung von HLA-Differenzen mit Fokus auf isolierte HLA-DQB1-Differenzen in einem deutschen Kollektiv an. Wir erhoffen dadurch Aussagen zur Bedeutung des HLA-DQB1-Matchings, die statistisch belastbar sind und in die klinischen Spenderauswahlalgorithmen integriert werden können.

4.3.11 Retrospektive Analyse der DRST-Registerdaten zum Überleben Heranwachsender und junger Erwachsener nach allogener Stammzelltransplantation in Deutschland

Verantwortlich: I. Hilgendorf¹, J. Frietsch², J. Beck³

- ¹ Klinik für Innere Medizin II, Hämatologie und internistische Onkologie, Universitätsklinikum Jena
- ² Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
- ³ Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Jena
 - Publikation: Frietsch JJ, Flossdorf S, Beck JF, Kröger N, Fleischhauer K, Dreger P, Schetelig J, Bornhäuser M, Hochhaus A, Hilgendorf I. Outcomes after allogeneic haematopoietic stem cell transplantation in young adults in Germany. Br J Haematol. 2023 Apr. doi: 10.1111/bjh.18610. Epub 2022 Dec 27. PMID: 36573337.
 - Vortrag (V291): Überleben nach hämatopoetischer Stammzelltransplantation von Heranwachsenden und jungen Erwachsenen in Deutschland. Präsentation am 08.10.2022 auf der DGHO-Jahrestagung in Wien.
 - Poster (P334): Impact of GvHD after hematopoietic stem cell transplantation in young adults on survival and relapse rate in Germany. Präsentation auf der EBMT-Jahrestagung vom 23.-26.04.2023 in Paris.
 - Poster (P1116): Outcome of young adults with chronic myeloid leukemia after allogeneic hematopoietic cell transplantation in the pre- and post-TKI era. Präsentation auf der Jahrestagung der DGHO vom 13.-16.10.2023 in Hamburg, Auszeichnung mit einem Posterpreis.
 - Poster (B202): Outcomes after allogeneic hematopoietic stem cell transplantation for acute leukemia in young adults compared with children, adolescents and elderly patients in Germany. Präsentation auf der EBMT-Jahrestagung vom 14.-17.04.2024 in Glasgow.
 - Manuskript zur Veröffentlichung eingereicht: Frietsch JJ, Flossdorf S, Ahmadian A, Beier R, Schuh C, Schroeder T, Blau IW, Stelljes M, Kröger N, Egger-Heidrich K, Eder M, Dreger P, Tischer J, Wagner-Drouet E, Bader P, Sauer MG, Meissner B, Fleischhauer K, Hilgendorf I. Outcome after allogeneic HSCT for acute leukemia in young adults compared with younger and elderly patients in Germany.
 - Poster (B241): Decreasing risk to die from acute leukemia after allogeneic stem cell transplantation in young adults. Präsentation auf der EBMT-Jahrestagung vom 30.03.-02.04.2025 in Florenz.

Junge Erwachsene im Alter von 18 bis 39 Jahren stellen unter Stammzelltransplantierten eine Minderheit dar. Die retrospektive Analyse der DRST-Registerdaten zum Überleben von jungen Erwachsenen nach erster allogener SZT in Deutschland ist in zwei Teilprojekte untergliedert. Über den erfolgreichen Abschluss des ersten Teilprojektes haben wir in den vergangenen Jahren berichtet. Die Daten, die eine Auswertung von über 9.000 Patientinnen und Patienten im jungen Erwachsenenalter im Zeitraum von 1998-2019 umfasste,

wurden auf der DGHO-Jahrestagung am 08.10.2022 in Wien sowie auf der EBMT-Jahrestagung im April 2023 in Paris präsentiert und im British Journal of Hematology publiziert (siehe oben). In einer ergänzenden Untersuchung junger Erwachsener mit CML zeigte sich, dass sich die Verbesserung der Wahrscheinlichkeit für das 10-Jahres-Gesamtüberleben in der Gesamtgruppe nicht auf Patienten mit CML übertragen lässt. Diese Subgruppenanalyse wurde auf der DGHO-Jahrestagung in Hamburg am 16.10.2023 mit einem Posterpreis ausgezeichnet.

Erste Daten des zweiten Teilprojektes, nämlich die vergleichende Analyse der Daten des PRSZT und DRST zum Überleben von Kindern, AYA und älteren Erwachsenen mit akuter Leukämie wurden während der EBMT-Jahrestagung im April 2024 in Glasgow präsentiert. Die Publikation der abschließenden Auswertung dieser Daten befindet sich aktuell im Reviewprozess. Insgesamt wurden über 11.000 Patienten im Alter von 0-72 Jahren, die an einer AML/ALL erkrankten und zwischen 2011 und 2019 transplantiert wurden in die Auswertung eingeschlossen. Die Mehrheit der Patienten (89,6 %) erhielt periphere Blutstammzellen von einem unverwandten (71,6 %) Spender. Die Wahrscheinlichkeit des 5-Jahres-Gesamtüberlebens nimmt dabei mit dem Alter für Patienten wie folgt ab: AML/ALL: 0-12 Jahre: 69/73 %, 13-17 Jahre: 60/72 %, 19-39 Jahre: 57/53 %, 40-59 Jahre: 49/51 % und 60-72 Jahre 37/37 %.

Interessanterweise konnte ein Einfluss für verwandte gegenüber unverwandten Spendern für AML (48 % vs. 46 %), nicht jedoch für ALL (52 % vs. 57 %, multivariable Analyse HR 1,06 [0,99; 1,14], p = 0,08) aufgezeigt werden. Obwohl die 5-Jahres-NRM-Rate für AML/ALL mit dem Alter ansteigt (0-12: 5/7 %; 13-17: 14/9 %; 18-39: 12/19 %: 40-59: 20/26 %; 60-72: 30/30 %), zeigte sich die Rückfallrate besonders bei den 13-17-Jährigen niedriger (AML/ALL: 26/18 %) im Vergleich zu den übrigen Altersgruppen (0-12: 33 %/28 %, 18-39: 40 %/31 %, 40-59: 34 %/28 %, 60-72: 35 %/32 %).

Die Ergebnisse belegen somit einerseits die Notwendigkeit von bedarfsorientierten und strukturierten Nachsorgekonzepten und unterstützen andererseits die Forderung nach der Umsetzung eines "right to be forgotten" für Langzeitüberlebende auch in Deutschland. Dies bedeutet, dass nach Eintritt der Heilungsbewährung die Daten einer vorherigen Krebserkrankung beim Abschluss von Finanzdienstleistungen und Versicherungen unberücksichtigt bleiben sollen. Um dies weiter zu untermauern wurde das Gesamtüberleben der Patienten zum Zeitpunkt der Transplantation und unter der Bedingung eins, fünf Jahre ohne Rückfall überlebt zu haben berechnet und mit denen der altersgleichen Allgemeinbevölkerung verglichen. Zum Zeitpunkt der Transplantation beträgt die Hazard Ratio im Vergleich zur Allgemeinbevölkerung 273 [253; 294] und fällt aber nach fünf Jahren rezidivfreien Überlebens auf 20 [8; 48] ab. Diese Ergebnisse wurden auf der EBMT-Jahrestagung 2025 in Florenz präsentiert.

5 Aktuelles vom Datenschutz

Beitrag von Dr. Hans-Peter Eberhard, Datenschutzbeauftragter des DRST

Joint Controllership Agreements

Auch im Jahr 2024 lag ein Schwerpunkt der Datenschutzarbeit auf den externen Verarbeitungsprozessen zwischen den Transplantationszentren, der European Society for Blood and Marrow Transplantation (EBMT) und dem DRST.

Besonders relevant war der Abschluss dreiseitiger Vereinbarungen zur gemeinsamen Verantwortlichkeit (Joint Controllership Agreements, JCA) mit allen deutschen EBMT-Zentren. Während sich die Verhandlungen teilweise als zeitaufwendig und anspruchsvoll erwiesen, konnten sie bis auf wenige Ausnahmen abgeschlossen werden. Dies stellt einen bedeutenden Fortschritt in der datenschutzrechtlichen Absicherung der Kooperation mit der EBMT dar.

Datenschutzdokumentation

Die Datenschutzdokumentation des DRST umfasst weiterhin das Verzeichnis der Verarbeitungstätigkeiten (VVT nach Artikel 30 DSGVO), die technischen und organisatorischen Maßnahmen (TOM nach Artikel 32 DSGVO) sowie die Datenschutz-Folgenabschätzung (DSFA nach Artikel 35 DSGVO).

Im März 2024 wurde die Version 2 dieser Dokumentation in der DRST-NextCloud veröffentlicht. Wie in den Vorjahren erfolgte eine jährliche Überprüfung durch die DRST-Mitarbeitenden gemeinsam mit dem Datenschutzbeauftragten (DSB), um Aktualität und Vollständigkeit sicherzustellen. Dringende Anpassungen aufgrund organisatorischer und technischer Veränderungen werden zeitnah umgesetzt und dokumentiert.

Begleitung des DRST-Umzugs

Ein weiterer wichtiger Aspekt der Datenschutzarbeit im Jahr 2024 war die datenschutzrechtliche Begleitung des Umzugs des DRST in neue Geschäftsräume in Ulm im Dezember. Dabei wurden insbesondere die Auswirkungen der veränderten Zusammenarbeit mit dem bislang in denselben Räumlichkeiten ansässigen Zentralen Knochenmarkspender-Register Deutschland (ZKRD) berücksichtigt. Diese Veränderungen werden in der überarbeiteten Datenschutzdokumentation dokumentiert und 2025 weiter überprüft.

Weitere Datenschutzmaßnahmen

Zu den weiteren Tätigkeiten im Bereich Datenschutz gehörten:

- Entwicklung und Aktualisierung von Checklisten und Richtlinien für Datenschutzbegehungen, Datenweitergaben und Bewerberdatenschutz
- Maßnahmen zur Prävention und Bearbeitung von Datenschutzverstößen
- Beratung zu den Themen Künstliche Intelligenz (KI), mobiles Arbeiten und Informationssicherheit.

Alle erarbeiteten Dokumente wurden in der DRST-Nextcloud hinterlegt und stehen den Mitarbeitenden zur Verfügung.

6 Danksagungen

Wir danken
der DKMS Group gGmbH
und der Alfred und Angelika Gutermuth-Stiftung
sowie der Sonja und Rolf Hennermann-Stiftung
für die aktuelle finanzielle Unterstützung.

Sonja und Rolf Hennermann-Stiftung

verwaltet von der Frankfurter Sparkasse

Wir danken für die Unterstützung in den Vorjahren:

Aktion "Kampf dem Krebs" der Deutschen Krebsgesellschaft
Deutsche José Carreras Leukämie-Stiftung
Deutsche Krebshilfe e. V.
medac GmbH

Darüber hinaus danken wir

- den lokalen Datenmanagerinnen und Datenmanagern sowie den Leiterinnen und Leitern der Transplantationseinheiten für die sehr konstruktive Zusammenarbeit mit dem DRST und dem PRSZT,
- der Deutschen Arbeitsgemeinschaft für Hämatopoetische Stammzelltransplantation und Zelluläre Therapie (DAG-HSZT e. V.),
- den Kolleginnen und Kollegen bei der European Society for Blood and Marrow Transplantation (EBMT), vor allem im Clinical Research & Registry Department und im EBMT Transplant Activity Survey Team, für die gute Zusammenarbeit.

7 Abkürzungsverzeichnis

AL akute Leukämie

ALL akute lymphatische Leukämie
AML akute myeloische Leukämie

anderer verwandter Spender verwandter Spender (kein HLA-id Geschwister) mit oder ohne Mismatch

in HLA-A, HLA-B, HLA-C, HLA-DRB1 oder HLA-DQB1

BMF Knochenmarkversagen (Bone Marrow Failure)

CAR-T-Zellen chimäre Antigenrezeptor-T-Zellen
CB Nabelschnurblut (Cord Blood)
CIC Centre Identification Code
CL chronische Leukämie

CLL chronische lymphatische Leukämie
CML chronische myeloische Leukämie
CNL chronische Neutrophilen-Leukämie

CP chronische Phase

CR komplette Remission (Complete Remission)

DAG-HSZT Deutsche Arbeitsgemeinschaft für Hämatopoetische Stammzelltransplantation

und zelluläre Therapie e. V.

DLBCL diffus großzelliges B-Zell-Lymphom (Diffuse Large B-cell Lymphoma)

DLI Spenderlymphozyteninfusion (Donor Lymphocyte Infusion)

DRST Deutsches Register für hämatopoetische Stammzelltransplantation und Zelltherapie

DZK Datenzugriffskommission

EBMT European Society for Blood and Marrow Transplantation

EBMT Registry EBMT-Datenbank

GvHD Transplantat-gegen-Wirt-Reaktion (Graft versus Host Disease)

haplo Abkürzung für haploidentisch. Ein haploidentischer Spender teilt durch gemeinsame

Vererbung genau einen HLA-Haplotyp mit dem Empfänger. Der andere HLA-Haplotyp wurde nicht vererbt und kann sich um eine variable Anzahl von HLA-Genen unterscheiden.

HLA Humanes Leukozyten-Antigen HLA-id Geschwister HLA-identisches Geschwister

HLA-id verwandt HLA-identischer verwandter Spender

HLA-MM verwandt partiell HLA-identischer verwandter Spender (MM = mismatch)

IST Immunsuppressive Behandlung (Immunosuppressive Treatment)

KM Knochenmark

MDS myelodysplastisches Syndrom

MDS/MPN myelodysplastische/myeloproliferative Neoplasie

MM multiples Myelom

MPN myeloproliferative Neoplasie NHL Non-Hodgkin-Lymphom

OT verschiedene Kombinationen aus KM, PB, CB (other)

PB peripheres Blut

PLL Prolymphozytenleukämie

PMBCL primär mediastinales großzelliges B-Zell-Lymphom (Primary Mediastinal Large B-cell Lymphoma

PRSZT Pädiatrisches Register für Stammzelltransplantation und Zelltherapie

Richter Richter-Transformation
SAA schwere aplastische Anämie

SLL kleinzelliges lymphozytisches Lymphom (Small Lymphocytic Lymphoma)
SM-AHN systemische Mastozytose mit assoziierter hämatologischer Neoplasie

Survey Survey on Transplant and Cellular Therapy Activity
TBI Ganzkörperbestrahlung (Total Body Irradiation)

unverwandt HLA-identischer oder partiell HLA-identischer unverwandter Spender

Zwilling eineiiger Zwilling

8 Anlagen

- A DRST/EBMT Survey on Transplant and Cellular Therapy Activity 2024
- B Publikationen unter Beteiligung des DRST in 2024
- C Deutschlandkarte: Standorte der in 2024 allogen transplantierenden Zentren
- D Deutschlandkarte: Standorte der in 2024 autolog transplantierenden Zentren
- E Deutschlandkarte: Standorte der in 2024 mit CAR-T-Zell-Therapien behandelnden Zentren
- F Deutschlandkarte: Standorte der in 2024 transplantierenden pädiatrischen Zentren

A DRST/EBMT Survey on Transplant and Cellular Therapy Activity 2024

EBMT SURVEY ON TRANSPLANT AND CELLULAR THERAPY ACTIVITY 2024

Submissions are now given on the online form. You will have received a link to the form from EBMT. This sheet is only to help you count the numbers.

Table 1: Report the number of <u>patients</u> receiving their 1st allogeneic and/or 1st autologous transplant in 2024 in rows 1-38. Beport the number of <u>patients</u> receiving their 1st allogeneic and autologous in 2024 in rows 1-38. Beport the number of <u>patients</u> receiving their 1st Gene therapy in 2024 in rows 1-38. Light grey cells will be automatically calculated by the online form.

Table 2: Report the number of <u>patients</u> receiving non HSCT cellular therapies in 2024 by indication and cell type in rows 1-9.

Table 3: Report the number of <u>patients</u> receiving their 1st CAR-T allogeneic and autologous in 2024 in rows 1-9.

Table 4: Report the number of <u>patients</u> receiving their 1st unanapipulated DLI (donor lymphocyte infusion) in 2024 in row 1.

Table 4: Report the number of <u>patients</u> receiving Immunosuppressive Treatments (IST) for acquired Bone Marrow Failure Syndromes in 2024 in row 1.

	DRST (EBMT		Immunosuppressive Treatments (IST) LA-id sibling Twin		Haplo and other HLA mismatched related donors			Unrelated			Autologous			Total Total		Total HSCT	CAR-T		Gene therapy		
		ВМ	PBSC	Cord	ВМ	PBSC	ВМ	PBSC	Cord	ВМ	PBSC	Cord	ВМ	PBSC	Cord				Allo	Auto	
1	AML 1st CR																				
2	AML in CR: > 1st CR																				
3	AML not in CR																				
4	AML: therapy related																				
5	AML: MDS related changes																				
6	ALL 1st CR																				
7	ALL non 1st CR																				
8	CML 1st cP																				
9	CML non 1st cP																				
10	MDS																				
11	MDS/MPN																				
12	MPN																				
13	CLL incl. PLL																				
14	PCD - MM																				
15	PCD - other																				
16	Hodgkin Lymphoma																				
17	DLBCL NHL - all types																				
18	Mantle cell lymphoma																				
19	Follicular lymphoma																				
20	Primary mediastinal large B-cell lymphoma (PMBCL)																				
21	Other B-cell NHL																				
22	T-cell NHL																				
23	Solid Tumors - Neuroblastoma																				
24	Solid Tumors - Soft tissue																				
25	Solid Tumors - Ewing sarcoma																				
26	Solid Tumors - Germ cell tumor																				
27	Other solid tumors																				
28	BM aplasia - SAA																				
29	BM aplasia - other																				
30	Thalassemia																				
31	Sickle cell disease																				
32	Inborn Errors of Immunity																				
33	Inborn Errors of Metabolism																				
34	Autoimmune Diseases - MS																				
35	Autoimmune Diseases - SSC																				
36	Autoimmune Diseases - SLE																				
37	Autoimmune Diseases - other																				
38	Others (incl. Histiocytosis)																				
39	Total 1st HSCT/CAR-T/Gene Therapy (row 1-38)																				
40	Additional non 1st HSCT/CAR-																				
41	T/Gene Therapy Total all HSCT/CAR-T/Gene Therapy																				
42	No. patients aged <18 reported in row 1-38																				

	Table 2: Number of patients with non HSCT cellular therapies using manipulated or selected cells	Selected/ expanded T cells or CIK		Regulatory T cells (TREGS)		Other genetically modified T cells		NK cells		Dendritic cells		MSC		Expanded CD34+ cells		Genetically modified CD34+		Other therapies (incl. boosts)	
	(excluding DLI & CAR-T) in 2024	Allo	Auto	Allo	Auto	Allo	Auto	Allo	Auto	Allo	Auto	Allo	Auto	Allo	Auto	Allo	Auto	Allo	Auto
1	GvHD																		
2	Graft enhancement/failure																		
3	Autoimmune disease																		
1	Genetic disease																		
5	Infection																		
6	Malignancy - ALL																		
7	Malignancy - Lymphoma																		
3	Malignancy - Myeloma																		
9	Any other indication																		
Table 3: Total Number patients with unmanipulated DLI infusions in 2024:						For graft enhancement/fa			ailure:		For residual di		isease:		For relapse:			Per pre	
1	Table 4: Total Number of patients receiving Immunosuppressive Treatments								For Anlast	i.a. A.a.a.a.	in (AA).			F	# P	no Marro	Fail	o Conside	

Guidelines zur Datenerfassung

Tabelle 1: Report the number of patients receiving their 1st allogeneic and/or 1st autologous transplant and/or their 1st CAR-T/Gene therapy in 2024:

Melden Sie die erste allogene Transplantation und/oder die erste autologe Transplantation pro Patient nach Krankheitsindikation, Spendertyp und Stammzellquelle, wie in Tabelle 1 dargestellt. Sie können denselben Patienten zweimal angeben, sofern die erste Transplantation jeder Art im Jahr 2024 stattfand. Patienten ohne Zustimmung zur Weitergabe von Daten sollten ebenfalls in die Erhebung aufgenommen werden.

Melden Sie die Anzahl der Patienten nach Indikation, die im Jahr 2024 ihre erste CAR-T-Allotherapie, ihre erste CAR-T-Autotherapie oder ihre erste Gentherapie erhalten haben. Verwenden Sie dazu die 3 Spalten am rechten Ende von Tabelle 1. Melden Sie sowohl Patienten mit als auch ohne Transplantation. Patienten in klinischen Studien können ebenfalls gemeldet werden.

Hinweis: Das Transplantationsverfahren beginnt mit der Konditionierung. Stirbt ein Patient unmittelbar nach der Verabreichung der Zellinfusion oder während der Konditionierung und vor der Verabreichung der Zellinfusion, so befindet sich der Patient noch innerhalb des Transplantationsverfahrens und muss gemeldet werden.

Es gelten die folgenden EBMT/JACIE/FACT-Definitionen für "First Transplants":

- erste Transplantation (neuer Patient, noch nie transplantiert)
- erstes Allotransplantat (nach einem vorherigen Autotransplantat) oder erstes Autotransplantat (nach einem vorherigen Allotransplantat)
- erste Allotransplantation oder erste Autotransplantation in Ihrer Klinik nach einer früheren Transplantation in einer anderen Klinik.

CAR T cells: T-Zellen, die durch virale oder nicht-virale Vektoren genetisch so verändert sind, dass sie chimäre Antigenrezeptoren oder T-Zell-Rezeptoren exprimieren.

Gentherapie: genetische Modifikation von autologen Stammzellen hämatopoetischer Zellen für therapeutische Zwecke

Krankheitsklassifizierung: Die Klassifizierung der Krankheiten für die Erhebung folgt der WHO-Klassifizierung von Tumoren der hämatopoetischen und lymphatischen Gewebe und dem EBMT-

Lexikon zur Krankheitsklassifizierung, das unter https://www.ebmt.org/registry/ebmt-data-collection zu finden ist.

Es gelten die folgenden Definitionen für den Spendertyp:

HLA-id sibling: HLA-identisches Geschwister.

Haplo (≥ 2 loci mismatch): jedes Familienmitglied mit 2 oder mehr Locus Mismatchen innerhalb der Loci HLA-A, -B, -C, -DRB1 und -DQB1 in GvH- und/oder HvG-Richtung.

Other HLA mismatched related donors: jeder andere verwandte Spender mit **HLA Mismatched**, der nicht unter die obigen Definitionen fällt.

Bei Kombinationen von Stammzellprodukten ist wie folgt zu verfahren:

- Knochenmark und peripheres Blut = periphere Blutstammzelltransplantation Eingabe als PBSC
- Knochenmark und Nabelschnurblut = Nabelschnurbluttransplantation als Cord eingeben
- Peripheres Blut und Nabelschnurblut = Nabelschnurbluttransplantation als Cord eingeben
- Knochenmark und peripheres Blut + Nabelschnurblut = Nabelschnurbluttransplantation als Cord eingeben

Zeile 39: Gesamtzahl der <u>Patienten</u>, die im Jahr 2024 ihr erstes Allotransplantat/erstes Autotransplantat/ erste CAR-T-Behandlung/erste Gentherapie erhalten haben (= Summe der Zeilen 1-38).

Zeile 40: Gesamtzahl der zusätzlichen oder erneuten <u>Transplantationen</u> (nicht erste HSZT) aufgrund von Transplantatversagen, Rückfall, anderen Ereignissen oder im Rahmen von geplanten Mehrfachtransplantationsprotokollen. Gesamtzahl zusätzlicher (nicht erste CAR-T-Behandlung/Gentherapie) Behandlungen aus beliebigem Grund im Jahr 2024. Geben Sie nur diejenigen an, die im Jahr 2024 durchgeführt wurden.

Zeile 41: Summe aller im Jahr 2024 durchgeführten <u>Transplantationen und CAR-T-Behandlungen/Gentherapien gemäß den Angaben in den Zeilen 1-38 + Zeile 40</u>.

Zeile 42: Anzahl der pädiatrischen <u>Patienten</u> (Alter <18 Jahre bei HSZT), die 2024 ihr erstes Allotransplantat oder ihr erstes Autotransplantat oder ihre erste CAR-T-Behandlung/Gentherapie im Jahr 2024 erhalten haben. Zweimal angeben: in den Zeilen 1-38 einzeln und als Gesamtzahl in Zeile 42.

Zusätzliche Informationen

- Allogene Zellen, die nach einer vorangegangenen allogenen HSZT wegen eines Rezidivs oder Anzeichen einer Transplantatabstoßung verabreicht wurden, oder wenn eine Konditionierung (Chemo und/oder TBI) erfolgt ist, werden unabhängig vom Spendertyp oder der Stammzellquelle als Retransplantation betrachtet und in Zeile 40 gemeldet.
- Vorgeplante doppelte oder dreifache allogene oder autologe Transplantationen, denen jeweils eine eigene Konditionierungsbehandlung vorausgeht, gelten als zusätzliche Transplantationen, die in Zeile 40 anzugeben sind.
- Die Reinfusion von allogenen peripheren Blutvorläuferzellen desselben Spenders ohne Konditionierung und ohne Anzeichen eines Transplantatversagens gilt als "Allo-Boost" und nicht als Transplantation. Ein Boost soll unter "Graft enhancement other therapies" in Tabelle 2 Zeile 2 gemeldet werden.
- Die Reinfusion von autologen peripheren Blutvorläuferzellen als Rettung für ein fehlgeschlagenes Transplantat ist ein Auto-"Boost" oder "Top-up" und gilt nicht als Transplantation; sie ist unter "Graft enhancement other therapies" in Tabelle 2 Zeile 2 anzugeben.

- Mehrere Infusionen desselben Produkts, z. B. doppelte oder mehrfache Stammzellgabe aus Nabelschnurblut oder-PBSC, die innerhalb einer Woche verabreicht werden, gelten als eine einzige Transplantation.
- Autologe Stammzellen, die innerhalb von 7 Tagen zusammen mit einem allogenen Transplantat verabreicht werden, gelten als ein allogenes Transplantat.

Tabelle 2: Number of patients receiving Non-HSCT Cellular Therapies using manipulated or selected cells (excluding DLI and CAR-T) in 2024: (CAR-T patients are now reported in Table 1):

Geben Sie die Anzahl der <u>Patienten</u> an, die im Jahr 2024 in Ihrer Klinik Zelltherapien erhalten haben, die keine HSZT sind, aufgeschlüsselt nach Indikation und Zelltyp der Zelltherapie. Geben Sie sowohl Patienten mit als auch ohne zusätzliche Transplantationen an. Patienten in klinischen Studien können ebenfalls angegeben werden.

Hinweis: CD34+ selektierte Transplantate oder z. B. CD3+ /CD19+ deletierte Zellinfusionen sind als Transplantate in Tabelle 1 anzugeben.

Selected/expanded T cells or Cytokine Induced Killer cells (CIK): nicht genetisch veränderte T-Zellen, die selektiert, in vitro expandiert oder durch Zytokine aktiviert wurden. Dazu gehören alle manipulierten T-Zell-Infusionen nach positiver oder negativer Selektion.

Regulatory T cells (TREGS): T-Zellen, die nach der Entnahme durch Selektion so verarbeitet wurden, dass sie für die Untergruppe der regulatorischen T-Zellen angereichert sind.

Other genetically modified T cells: andere gentechnisch veränderte T-Zellen mit Suizidgenen oder anderen Genen.

NK cells: Zellen, die nach der Entnahme durch Selektion so verarbeitet wurden, dass sie für expandierte oder nicht-expandierte NK-Zellen mit oder ohne genetische Manipulation angereichert sind.

Dendritic cells: Antigenpräsentierende Zellen, die u. a. als Tumorzell-Vakzine verwendet werden.

MSC: mesenchymale Stromazellen.

Expanded CD34+ cells: Stammzellprodukte, die in vitro expandiert werden, bevor sie dem Patienten übertragen werden.

Genetically modified CD34+ cells: genetisch veränderte Stammzellen, die in der Regel bei angeborenen Krankheiten eingesetzt werden.

Other therapies: allogene oder autologe Boosts und alle anderen, oben nicht aufgeführten Zelltherapien.

Tabelle 3: Anzahl der Patienten mit nicht manipulierten DLI-Infusionen im Jahr 2024:

Anzahl der Patienten, die im Jahr 2024 in Ihrem Zentrum ihre erste Spenderlymphozyteninfusion (DLI) oder eine weitere DLI-Gabe erhalten haben (unabhängig davon, ob die DLI auch in Ihrem Zentrum hergestellt wurde) . Geben Sie den Hauptgrund für die Verabreichung der DLI zum Zeitpunkt der Infusion an, falls mehrere vorliegen.

Das Jahr der Transplantation hat keinen Einfluss auf die DLI-Meldung selbst. Wenn die Aufschlüsselung der DLI unbekannt ist, geben Sie bitte die Gesamtzahl der Patienten an, die DLI erhalten haben. Alle manipulierten T-Zell-Infusionen mit positiver oder negativer Selektion sollten in Tabelle 2 oben als Zelltherapie gemeldet werden.

Tabelle 4: Anzahl der Patienten, die im Jahr 2024 immunsuppressive Behandlungen (IST) für erworbene Knochenmarkversagensyndrome erhalten:

Geben Sie die Anzahl der Patienten an, die im Jahr 2024 in Ihrem Zentrum immunsuppressive Behandlungen (IST) für erworbene Knochenmarkversagensyndrome erhalten haben. Geben Sie die Anzahl der Patienten, die mit IST wegen aplastischer Anämie (AA) und wegen anderer Knochenmarksversagensyndrome behandelt wurden, separat an.

Hinweis: Wenn Ihr Zentrum nicht in der Lage ist, die Anzahl der IST-Patienten aufgeschlüsselt nach aplastischer Anämie und anderen Knochenmarksversagensyndromen anzugeben, geben Sie bitte die Gesamtzahl der IST an.

B Publikationen unter Beteiligung des DRST in 2024

Sockel K, Neu A, Goeckenjan M, et al. Hope for motherhood: pregnancy after allogeneic hematopoietic cell transplantation (a national multicenter study). *Blood*, 144(14):1532–1542, 2024. doi:10.1182/blood.2024024342.

Gagelmann N, Schuh C, Zeiser R, et al. Allogeneic Hematopoietic Cell Transplantation for Myelofibrosis Aged 70 Years or Older: A Study from the German Registry for Stem Cell Transplantation. *Transplantation and Cellular Therapy*, 30(10):1011.e1–1011.e13, 2024. doi:10.1016/j.jtct.2024.07.026.

Gagelmann N, Schuh C, Flossdorf S, et al. Impact of busulfan versus treosulfan dose intensity in myelofibrosis undergoing hematopoietic cell transplantation. *American Journal of Hematology*, 99(8):1540–1549, 2024. doi:10.1002/ajh.27363.

Finke J, Schmoor C, Ayuk F, et al. Long term results of a prospective multicenter observational study on the use of anti-human T-lymphocyte immunoglobulin (ATLG) in unrelated donor transplantation (ATOS study). *Bone Marrow Transplantation*, 59:936–941, 2024. doi:10.1038/s41409-024-02264-9.

Lübke J, Christen D, Schwaab J, et al. Allogeneic Hematopoietic Cell Transplantation in Advanced Systemic Mastocytosis: A retrospective analysis of the DRST and GREM registries. *Leukemia*, 38:810–821, 2024. doi:10.1038/s41375-024-02186-x.

Weller JF, Lengerke C, Finke J, et al. Allogeneic hematopoietic stem cell transplantation in patients aged 60-79 years in Germany (1998-2018): a registry study. *Haematologica*, 109(2):431-443, 2024. doi:10.3324/haematol.2023.283175.

Fein JA, Shouval R, Krieger E, et al. Systematic evaluation of donor-KIR/recipient-HLA interactions in HLA-matched hematopoietic cell transplantation for AML. *Blood Advances*, 8(3):581–590, 2024. doi:10.1182/bloodadvances.2023011622.

Amann EM, Gowdavally S, Tsamadou C, et al. The impact of MICB mismatches in unrelated haemato-poietic stem cell transplantation. *HLA*, 103(6):e15584, 2024. doi:10.1111/tan.15584.

Bethge W, Flossdorf S, Hanke F, et al. Does size matter? Center-specific characteristics and survival after allogeneic hematopoietic cell transplantation for acute myeloid leukemia: an analysis of the German Registry for Stem Cell Transplantation and Cell Therapy. *Haematologica*, 110(6):1292–1303, 2025. doi: 10.3324/haematol.2024.286385.

Arslan A, Labuhn S, Sala E, et al. Outcomes of haploidentical transplants with PT-CY vs 10/10 MUD transplants with ATG in Germany. *Blood Advances*, 8(23):6104–6113, 2024. doi:10.1182/bloodadvances.2024013719.

C Deutschlandkarte: Standorte der in 2024 allogen transplantierenden Zentren

D Deutschlandkarte: Standorte der in 2024 autolog transplantierenden Zentren

E Deutschlandkarte: Standorte der in 2024 mit CAR-T-Zell-Therapien behandelnden Zentren

F Deutschlandkarte: Standorte der in 2024 transplantierenden pädiatrischen Zentren

Wir danken für die aktuelle finanzielle Unterstützung:

verwaltet von der Frankfurter Sparkasse